Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Websites
related space history websites

  collectSPACE: Messages
  Satellites - Robotic Probes
  Transiting Exoplanet Survey Satellite (TESS)

Post New Topic  Post A Reply
profile | register | preferences | faq | search

next newest topic | next oldest topic
Author Topic:   Transiting Exoplanet Survey Satellite (TESS)
Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 04-05-2013 08:25 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
MIT release
NASA selects MIT-led TESS project for 2017 mission

Following a three-year competition, NASA has selected the Transiting Exoplanet Survey Satellite (TESS) project at MIT for a planned launch in 2017. The space agency announced the mission — to be funded by a $200 million grant to the MIT-led team — this afternoon.

TESS team partners include the MIT Kavli Institute for Astrophysics and Space Research (MKI) and MIT Lincoln Laboratory; NASA's Goddard Spaceflight Center; Orbital Sciences Corporation; NASA's Ames Research Center; the Harvard-Smithsonian Center for Astrophysics; The Aerospace Corporation; and the Space Telescope Science Institute.

The project, led by principal investigator George Ricker, a senior research scientist at MKI, will use an array of wide-field cameras to perform an all-sky survey to discover transiting exoplanets, ranging from Earth-sized planets to gas giants, in orbit around the brightest stars in the sun's neighborhood.

An exoplanet is a planet orbiting a star other than the sun; a transiting exoplanet is one that periodically eclipses its host star.

"TESS will carry out the first space-borne all-sky transit survey, covering 400 times as much sky as any previous mission," Ricker says. "It will identify thousands of new planets in the solar neighborhood, with a special focus on planets comparable in size to the Earth."

TESS relies upon a number of innovations developed by the MIT team over the past seven years. "For TESS, we were able to devise a special new 'Goldilocks' orbit for the spacecraft — one which is not too close, and not too far, from both the Earth and the moon," Ricker says.

As a result, every two weeks TESS approaches close enough to the Earth for high data-downlink rates, while remaining above the planet's harmful radiation belts. This special orbit will remain stable for decades, keeping TESS's sensitive cameras in a very stable temperature range.

With TESS, it will be possible to study the masses, sizes, densities, orbits and atmospheres of a large cohort of small planets, including a sample of rocky worlds in the habitable zones of their host stars. TESS will provide prime targets for further characterization by the James Webb Space Telescope, as well as other large ground-based and space-based telescopes of the future.

TESS project members include Ricker; Josh Winn, an associate professor of physics at MIT; and Sara Seager, a professor of planetary science and physics at MIT.

"We're very excited about TESS because it's the natural next step in exoplanetary science," Winn says.

"The selection of TESS has just accelerated our chances of finding life on another planet within the next decade," Seager adds.

MKI research scientists Roland Vanderspek and Joel Villasenor will serve as deputy principal investigator and payload scientist, respectively. Principal research scientist Alan Levine serves as a co-investigator. Tony Smith of Lincoln Lab will manage the TESS payload effort, Lincoln Lab will develop the optical cameras and custom charge-coupled devices required by the mission.

"NASA's Explorer Program gives us a wonderful opportunity to carry out forefront space science with a relatively small university-based group and on a time scale well-matched to the rapidly evolving field of extrasolar planets," says Jackie Hewitt, a professor of physics and director of the Kavli Institute for Astrophysics and Space Research. "At MIT, TESS has the involvement of faculty and research staff of the Kavli Institute, the Department of Physics, and the Department of Earth, Atmospheric, and Planetary Sciences, so we will be actively engaging students in this exciting work."

Previous sky surveys with ground-based telescopes have mainly picked out giant exoplanets. NASA's Kepler spacecraft has recently uncovered the existence of many smaller exoplanets, but the stars Kepler examines are faint and difficult to study. In contrast, TESS will examine a large number of small planets around the very brightest stars in the sky.

"The TESS legacy will be a catalog of the nearest and brightest main-sequence stars hosting transiting exoplanets, which will forever be the most favorable targets for detailed investigations," Ricker said.

The Explorer Program is NASA's oldest continuous program and has launched more than 90 missions. It began in 1958 with the Explorer 1, which discovered the Earth's radiation belts. Another Explorer mission, the Cosmic Background Explorer, led to a Nobel Prize. NASA's Goddard Space Flight Center manages the program for the agency's Science Mission Directorate in Washington.

Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 04-24-2013 09:54 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
Orbital Sciences Corporation release
Orbital selected by NASA for TESS astrophysics satellite

Orbital Sciences Corporation, one of the world's leading space technology companies, announced today that it has been selected by the National Aeronautics and Space Administration (NASA) to design, manufacture, integrate and test a new astrophysics satellite that will perform a full-sky search for exoplanets around nearby stars. The Transiting Exoplanet Survey Satellite (TESS) satellite program, which will be based on Orbital's proven LEOStar-2 spacecraft platform, will be executed at Orbital's satellite production and testing facility in Dulles, VA. The four-year contract is valued at approximately $75 million.

The mission of the TESS spacecraft is to provide prime exoplanet candidates for further characterization by the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes in the future. The planned launch of the TESS spacecraft in mid-2017 is well matched to JWST's scheduled launch in 2018 to maintain momentum in NASA's exoplanet program.

"We are honored to have the opportunity to support MIT and Goddard in this pioneering astrophysics mission that will result in the first space-borne all-sky exoplanet transit survey," said Mr. Mike Miller, Orbital's Senior Vice President of Science and Environmental Satellite Programs. "Our reliable and affordable line of LEOStar spacecraft, coupled with MIT's world-class science leadership and Goddard's experienced mission management team, will provide an innovative space science mission for NASA in the most cost-effective way possible."

Chosen for its scientific value and low-risk development plan, the TESS mission will perform an all-sky survey using an unique array of telescopes to discover exoplanets orbiting nearby stars and will seek to identify habitable, Earth-like planets. TESS will further the study of small exoplanets, first uncovered by NASA's Kepler spacecraft, by examining an immense quantity of small planets that surround the sky's brightest stars. The stars examined by Kepler are fainter and more difficult to study than those TESS will survey, and past ground-based observations have been limited to only giant exoplanets, thereby ensuring that TESS will provide a compelling new catalog of stars hosting transiting exoplanets, suitable for future missions to study.

The TESS mission was awarded under NASA's Explorer series of lower cost and highly productive space science satellites. Orbital has built multiple Explorer satellites for NASA in the past, including the NuSTAR, Swift, GALEX, AIM and IBEX spacecraft, all of which are currently operational and providing valuable scientific data.

The TESS project is being led by Principal Investigator Dr. George Ricker of Massachusetts Institute of Technology (MIT) in Cambridge, MA, and mission management is performed by NASA's Goddard Space Flight Center. The TESS mission features partners from the MIT Kavli Institute for Astrophysics and Space Research (MKI) and MIT Lincoln Laboratory, NASA's Ames Research Center, the Harvard-Smithsonian Center for Astrophysics, The Aerospace Corporation, and the Space Telescope Science Institute. The two-year astrophysics mission will be funded by a $200 million award from NASA.

The TESS mission will rely on Orbital's LEOStar-2 platform, a flexible, high-performance spacecraft for space and Earth science, remote sensing and other applications. Spacecraft built on the LEOStar-2 bus have such performance options as redundancy, propulsion capability, high data rate communications, and high-agility/high-accuracy pointing. The LEOStar-2 series of spacecraft have supported multiple missions for commercial and government customers over the past 15 years.

Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 02-15-2018 04:53 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Transiting Exoplanet Survey Satellite Arrives at Kennedy Space Center for Launch

NASA's next planet-hunting mission has arrived in Florida to begin preparations for launch.

The Transiting Exoplanet Survey Satellite (TESS) is scheduled to launch on a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station nearby NASA's Kennedy Space Center in Florida no earlier than April 16, pending range approval. TESS was delivered Feb. 12 aboard a truck from Orbital ATK in Dulles, Virginia, where it spent 2017 being assembled and tested. Over the next month, the spacecraft will be prepped for launch at Kennedy's Payload Hazardous Servicing Facility (PHSF).

TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. The mission will scan nearly the entire sky to monitor more than 200,000 of the nearest and brightest stars in search of transit events — periodic dips in a star's brightness caused by planets passing in front of their stars.

TESS is expected to find thousands of exoplanets. The upcoming James Webb Space Telescope, scheduled for launch in 2019, will provide important follow-up observations of some of the most promising TESS-discovered exoplanets, allowing scientists to study their atmospheres and, in some special cases, to search for signs that these planets could support life.

Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 04-18-2018 08:34 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Planet Hunter on Its Way to Orbit

NASA's Transiting Exoplanet Survey Satellite (TESS) launched on the first-of-its-kind mission to find worlds beyond our solar system, including some that could support life.

TESS, which is expected to find thousands of new exoplanets orbiting nearby stars, lifted off at 6:51 p.m. EDT Wednesday on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. At 7:53 p.m., the twin solar arrays that will power the spacecraft successfully deployed.

"We are thrilled TESS is on its way to help us discover worlds we have yet to imagine, worlds that could possibly be habitable, or harbor life," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "With missions like the James Webb Space Telescope to help us study the details of these planets, we are ever the closer to discovering whether we are alone in the universe."

Over the course of several weeks, TESS will use six thruster burns to travel in a series of progressively elongated orbits to reach the Moon, which will provide a gravitational assist so that TESS can transfer into its 13.7-day final science orbit around Earth. After approximately 60 days of check-out and instrument testing, the spacecraft will begin its work.

"One critical piece for the science return of TESS is the high data rate associated with its orbit," said George Ricker, TESS principal investigator at the Massachusetts Institute of Technology's (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge. "Each time the spacecraft passes close to Earth, it will transmit full-frame images taken with the cameras. That's one of the unique things TESS brings that was not possible before."

For this two-year survey mission, scientists divided the sky into 26 sectors. TESS will use four unique wide-field cameras to map 13 sectors encompassing the southern sky during its first year of observations and 13 sectors of the northern sky during the second year, altogether covering 85 percent of the sky.

TESS will be watching for phenomena called transits. A transit occurs when a planet passes in front of its star from the observer's perspective, causing a periodic and regular dip in the star's brightness. More than 78 percent of the approximately 3,700 confirmed exoplanets have been found using transits.

NASA's Kepler spacecraft found more than 2,600 exoplanets, most orbiting faint stars between 300 and 3,000 light-years from Earth, using this same method of watching for transits. TESS will focus on stars between 30 and 300 light-years away and 30 to 100 times brighter than Kepler's targets.

The brightness of these target stars will allow researchers to use spectroscopy, the study of the absorption and emission of light, to determine a planet's mass, density and atmospheric composition. Water, and other key molecules, in its atmosphere can give us hints about a planets' capacity to harbor life.

"The targets TESS finds are going to be fantastic subjects for research for decades to come," said Stephen Rinehart, TESS project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It's the beginning of a new era of exoplanet research."

Through the TESS Guest Investigator Program, the worldwide scientific community will be able to conduct research beyond TESS's core mission in areas ranging from exoplanet characterization to stellar astrophysics, distant galaxies and solar system science.

TESS is a NASA Astrophysics Explorer mission led and operated by MIT and managed by Goddard. George Ricker, of MIT's Kavli Institute for Astrophysics and Space Research, serves as principal investigator for the mission. TESS's four wide-field cameras were developed by MIT's Lincoln Laboratory. Additional partners include Orbital ATK, NASA's Ames Research Center, the Harvard-Smithsonian Center for Astrophysics, and the Space Telescope Science Institute. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 05-18-2018 11:52 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's New Planet Hunter Snaps Initial Test Image, Swings by Moon Toward Final Orbit

NASA's next planet hunter, the Transiting Exoplanet Survey Satellite (TESS), is one step closer to searching for new worlds after successfully completing a lunar flyby on May 17. The spacecraft passed about 5,000 miles from the Moon, which provided a gravity assist that helped TESS sail toward its final working orbit.

Above: This test image from one of the four cameras aboard the Transiting Exoplanet Survey Satellite (TESS) captures a swath of the southern sky along the plane of our galaxy. TESS is expected to cover more than 400 times the amount of sky shown in this image when using all four of its cameras during science operations. (NASA/MIT/TESS)

As part of camera commissioning, the science team snapped a two-second test exposure using one of the four TESS cameras. The image, centered on the southern constellation Centaurus, reveals more than 200,000 stars. The edge of the Coalsack Nebula is in the right upper corner and the bright star Beta Centauri is visible at the lower left edge. TESS is expected to cover more than 400 times as much sky as shown in this image with its four cameras during its initial two-year search for exoplanets. A science-quality image, also referred to as a "first light" image, is expected to be released in June.

TESS will undergo one final thruster burn on May 30 to enter its science orbit around Earth. This highly elliptical orbit will maximize the amount of sky the spacecraft can image, allowing it to continuously monitor large swaths of the sky. TESS is expected to begin science operations in mid-June after reaching this orbit and completing camera calibrations.

Launched from Cape Canaveral Air Force Station in Florida on April 18, TESS is the next step in NASA's search for planets outside our solar system, known as exoplanets. The mission will observe nearly the entire sky to monitor nearby, bright stars in search of transits — periodic dips in a star's brightness caused by a planet passing in front of the star. TESS is expected to find thousands of exoplanets. NASA's upcoming James Webb Space Telescope, scheduled for launch in 2020, will provide important follow-up observations of some of the most promising TESS-discovered exoplanets, allowing scientists to study their atmospheres.

Robert Pearlman
Editor

Posts: 40144
From: Houston, TX
Registered: Nov 1999

posted 09-17-2018 12:44 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's TESS Shares First Science Image in Hunt to Find New Worlds

NASA's newest planet hunter, the Transiting Exoplanet Survey Satellite (TESS), is now providing valuable data to help scientists discover and study exciting new exoplanets, or planets beyond our solar system. Part of the data from TESS' initial science orbit includes a detailed picture of the southern sky taken with all four of the spacecraft's wide-field cameras. This "first light" science image captures a wealth of stars and other objects, including systems previously known to have exoplanets.

Above: The Transiting Exoplanet Survey Satellite (TESS) took this snapshot of the Large Magellanic Cloud (right) and the bright star R Doradus (left) with just a single detector of one of its cameras on Tuesday, Aug. 7. The frame is part of a swath of the southern sky TESS captured in its "first light" science image as part of its initial round of data collection. (NASA/MIT/TESS)

"In a sea of stars brimming with new worlds, TESS is casting a wide net and will haul in a bounty of promising planets for further study," said Paul Hertz, astrophysics division director at NASA Headquarters in Washington. "This first light science image shows the capabilities of TESS' cameras, and shows that the mission will realize its incredible potential in our search for another Earth."

TESS acquired the image using all four cameras during a 30-minute period on Tuesday, Aug. 7. The black lines in the image are gaps between the camera detectors. The images include parts of a dozen constellations, from Capricornus to Pictor, and both the Large and Small Magellanic Clouds, the galaxies nearest to our own. The small bright dot above the Small Magellanic Cloud is a globular cluster — a spherical collection of hundreds of thousands of stars — called NGC 104, also known as 47 Tucanae because of its location in the southern constellation Toucana, the Toucan. Two stars, Beta Gruis and R Doradus, are so bright they saturate an entire column of pixels on the detectors of TESS's second and fourth cameras, creating long spikes of light.

"This swath of the sky's southern hemisphere includes more than a dozen stars we know have transiting planets based on previous studies from ground observatories," said George Ricker, TESS principal investigator at the Massachusetts Institute of Technology's (MIT) Kavli Institute for Astrophysics and Space Research in Cambridge.

Above: The Transiting Exoplanet Survey Satellite (TESS) captured this strip of stars and galaxies in the southern sky during one 30-minute period on Tuesday, Aug. 7. Created by combining the view from all four of its cameras, this is TESS' "first light," from the first observing sector that will be used for identifying planets around other stars. Notable features in this swath of the southern sky include the Large and Small Magellanic Clouds and a globular cluster called NGC 104, also known as 47 Tucanae. The brightest stars in the image, Beta Gruis and R Doradus, saturated an entire column of camera detector pixels on the satellite's second and fourth cameras. (NASA/MIT/TESS)

TESS's cameras, designed and built by MIT's Lincoln Laboratory in Lexington, Massachusetts, and the MIT Kavli Institute, monitor large swaths of the sky to look for transits. Transits occur when a planet passes in front of its star as viewed from the satellite's perspective, causing a regular dip in the star's brightness.

TESS will spend two years monitoring 26 such sectors for 27 days each, covering 85 percent of the sky. During its first year of operations, the satellite will study the 13 sectors making up the southern sky. Then TESS will turn to the 13 sectors of the northern sky to carry out a second year-long survey.

MIT coordinates with Northrop Grumman in Falls Church, Virginia, to schedule science observations. TESS transmits images every 13.7 days, each time it swings closest to Earth. NASA's Deep Space Network receives and forwards the data to the TESS Payload Operations Center at MIT for initial evaluation and analysis. Full data processing and analysis takes place within the Science Processing and Operations Center pipeline at NASA's Ames Research Center in Silicon Valley, California, which provides calibrated images and refined light curves that scientists can analyze to find promising exoplanet transit candidates.

TESS builds on the legacy of NASA's Kepler spacecraft, which also uses transits to find exoplanets. TESS's target stars are 30 to 300 light-years away and about 30 to 100 times brighter than Kepler's targets, which are 300 to 3,000 light-years away. The brightness of TESS' targets make them ideal candidates for follow-up study with spectroscopy, the study of how matter and light interact.

The James Webb Space Telescope and other space and ground observatories will use spectroscopy to learn more about the planets TESS finds, including their atmospheric compositions, masses and densities.

TESS has also started observations requested through the TESS Guest Investigator Program, which allows the broader scientific community to conduct research using the satellite.

"We were very pleased with the number of guest investigator proposals we received, and we competitively selected programs for a wide range of science investigations, from studying distant active galaxies to asteroids in our own solar system," said Padi Boyd, TESS project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "And of course, lots of exciting exoplanet and star proposals as well. The science community are chomping at the bit to see the amazing data that TESS will produce and the exciting science discoveries for exoplanets and beyond."

All times are CT (US)

next newest topic | next oldest topic

Administrative Options: Close Topic | Archive/Move | Delete Topic
Post New Topic  Post A Reply
Hop to:

Contact Us | The Source for Space History & Artifacts

Copyright 2018 collectSPACE.com All rights reserved.


Ultimate Bulletin Board 5.47a





advertisement