Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Websites
related space history websites

  collectSPACE: Messages
  Satellites - Robotic Probes
  Hubble Space Telescope: New observations

Post New Topic  Post A Reply
profile | register | preferences | faq | search

next newest topic | next oldest topic
Author Topic:   Hubble Space Telescope: New observations
Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-03-2009 06:52 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA Briefings Unveil Hubble's New Observations

NASA will hold news briefings at 11 a.m. and noon EDT Wednesday, Sept. 9, to release and discuss the first images from the newly refurbished Hubble Space Telescope. NASA Television and the agency's Web site will provide live coverage of the briefings from NASA Headquarters in Washington.

Space shuttle Atlantis' STS-125 mission upgraded the telescope in May with state-of-the-art science instruments, leaving it more powerful than ever and extending its life into the next decade.

Charlie Bolden, NASA administrator and pilot of space shuttle Discovery on the STS-31 mission that launched Hubble in 1990, will join U.S. Sen. Barbara A. Mikulski, D-Md., in the unveiling of the Hubble images during the 11 a.m. briefing. A panel of scientists then will discuss Hubble's new and refurbished instruments and the images they produced.

The participants are:

  • Ed Weiler, associate administrator, Science Mission Directorate at NASA Headquarters
  • Bob O'Connell, chair of the science oversight committee for the Wide Field Camera 3 at the University of Virginia
  • James Green, the Cosmic Origins Spectrograph principal investigator at the University of Colorado
  • David Leckrone, senior project scientist for Hubble at NASA's Goddard Space Flight Center in Greenbelt, Md.
  • Heidi Hammel, senior research scientist at the Space Science Institute in Boulder, Colo.
The second briefing immediately follows at noon. The STS-125 astronauts will discuss how they enabled Hubble's new capabilities during their historic servicing mission.

Scott Altman commanded Atlantis' crew, which included Pilot Gregory C. Johnson and Mission Specialists Andrew Feustel, Michael Good, John Grunsfeld, Megan McArthur and Mike Massimino.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-09-2009 10:16 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Hubble Opens New Eyes on the Universe

NASA's Hubble Space Telescope is back in business, ready to uncover new worlds, peer ever deeper into space, and even map the invisible backbone of the universe.

The first snapshots from the refurbished Hubble showcase the 19-year-old telescope's new vision. Topping the list of exciting new views are colorful multi-wavelength pictures of far-flung galaxies, a densely packed star cluster, an eerie "pillar of creation," and a "butterfly" nebula.

With the release of these images, astronomers have declared Hubble a fully rejuvenated observatory. Sen. Barbara A. Mikulski, D-Md., unveiled the images at NASA Headquarters in Washington, D.C., on Sept. 9, 2009.

With its new imaging camera, Hubble can view galaxies, star clusters, and other objects across a wide swath of the electromagnetic spectrum, from ultraviolet to near-infrared light. A new spectrograph slices across billions of light-years to map the filamentary structure of the universe and trace the distribution of elements that are fundamental to life.

The telescope's new instruments also are more sensitive to light and can observe in ways that are significantly more efficient and require less observing time than previous generations of Hubble instruments.

NASA astronauts installed the new instruments during the space shuttle servicing mission in May 2009. Besides adding the instruments, the astronauts also completed a dizzying list of other chores that included performing unprecedented repairs on two other science instruments.

Now that Hubble has reopened for business, it will tackle a whole range of observations. Looking closer to Earth, such observations will include taking a census of the population of Kuiper Belt objects residing at the fringe of our solar system, witnessing the birth of planets around other stars, and probing the composition and structure of the atmospheres of other worlds.

Peering much farther away, astronomers have ambitious plans to use Hubble to make the deepest-ever portrait of the universe in near-infrared light. The resulting picture may reveal never-before-seen infant galaxies that existed when the universe was less than 500 million years old. Hubble also is now significantly more well-equipped to probe and further characterize the behavior of dark energy, a mysterious and little-understood repulsive force that is pushing the universe apart at an ever-faster rate.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-09-2009 10:24 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote

Credit: NASA, ESA, and the Hubble SM4 ERO Team
Eta Carinae
Probing the Last Gasps of Doomed Star Eta Carinae

The signature balloon-shaped clouds of gas blown from a pair of massive stars called Eta Carinae have tantalized astronomers for decades. Eta Carinae has a volatile temperament, prone to violent outbursts over the past 200 years.

Observations by the newly repaired Space Telescope Imaging Spectrograph (STIS) aboard NASA’s Hubble Space Telescope reveal some of the chemical elements that were ejected in the eruption seen in the middle of the 19th century.

STIS analyzed the chemical information along a narrow section of one of the giant lobes of gas. In the resulting spectrum, iron and nitrogen define the outer boundary of the massive wind, a stream of charged particles, from Eta Car A, the primary star. The amount of mass being carried away by the wind is the equivalent one sun every thousand years. While this "mass loss" may not sound very large, in fact it is an enormous rate among stars of all types. A very faint structure, seen in argon, is evidence of an interaction between winds from Eta Car A and those of Eta Car B, the hotter, less massive, secondary star.

Eta Car A is one of the most massive and most visible stars in the sky. Because of the star’s extremely high mass, it is unstable and uses its fuel very quickly, compared to other stars. Such massive stars also have a short lifetime, and we expect that Eta Carinae will explode within a million years.

Eta Carinae was first catalogued by Edmund Halley in 1677. In 1843 Eta Carinae was one of the brightest stars in the sky. It then slowly faded until, in 1868, it became invisible in the sky. Eta Carinae started to brighten again in the 1990s and was again visible to the naked eye. Around 1998 and 1999 its brightness suddenly and unexpectedly doubled.

Eta Carinae is 7,500 light-years away in the constellation Carina.

The Hubble observations are part of the Hubble Servicing Mission 4 Early Release Observations. NASA astronauts repaired STIS during a servicing mission in May to upgrade and repair the 19-year-old Hubble telescope.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-09-2009 10:25 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote

Credit: NASA, ESA, and the Hubble SM4 ERO Team
NGC 6302
Butterfly Emerges from Stellar Demise in Planetary Nebula NGC 6302

This celestial object looks like a delicate butterfly. But it is far from serene.

What resemble dainty butterfly wings are actually roiling cauldrons of gas heated to more than 36,000 degrees Fahrenheit. The gas is tearing across space at more than 600,000 miles an hour -- fast enough to travel from Earth to the moon in 24 minutes!

A dying star that was once about five times the mass of the Sun is at the center of this fury. It has ejected its envelope of gases and is now unleashing a stream of ultraviolet radiation that is making the cast-off material glow. This object is an example of a planetary nebula, so-named because many of them have a round appearance resembling that of a planet when viewed through a small telescope.

The Wide Field Camera 3 (WFC3), a new camera aboard NASA’s Hubble Space Telescope, snapped this image of the planetary nebula, catalogued as NGC 6302, but more popularly called the Bug Nebula or the Butterfly Nebula. WFC3 was installed by NASA astronauts in May 2009, during the servicing mission to upgrade and repair the 19-year-old Hubble telescope.

NGC 6302 lies within our Milky Way galaxy, roughly 3,800 light-years away in the constellation Scorpius. The glowing gas is the star’s outer layers, expelled over about 2,200 years. The "butterfly" stretches for more than two light-years, which is about half the distance from the Sun to the nearest star, Alpha Centauri.

The central star itself cannot be seen, because it is hidden within a doughnut-shaped ring of dust, which appears as a dark band pinching the nebula in the center. The thick dust belt constricts the star’s outflow, creating the classic "bipolar" or hourglass shape displayed by some planetary nebulae.

The star’s surface temperature is estimated to be about 400,000 degrees Fahrenheit, making it one of the hottest known stars in our galaxy. Spectroscopic observations made with ground-based telescopes show that the gas is roughly 36,000 degrees Fahrenheit, which is unusually hot compared to a typical planetary nebulae.

The WFC3 image reveals a complex history of ejections from the star. The star first evolved into a huge red-giant star, with a diameter of about 1,000 times that of our Sun. It then lost its extended outer layers. Some of this gas was cast off from its equator at a relatively slow speed, perhaps as low as 20,000 miles an hour, creating the doughnut-shaped ring. Other gas was ejected perpendicular to the ring at higher speeds, producing the elongated "wings" of the butterfly-shaped structure. Later, as the central star heated up, a much faster stellar wind, a stream of charged particles travelling at more than 2 million miles an hour, plowed through the existing wing-shaped structure, further modifying its shape.

The image also shows numerous finger-like projections pointing back to the star, which may mark denser blobs in the outflow that have resisted the pressure from the stellar wind.

The nebula's outer edges are largely due to light emitted by nitrogen, which marks the coolest gas visible in the picture. WFC3 is equipped with a wide variety of filters that isolate light emitted by various chemical elements, allowing astronomers to infer properties of the nebular gas, such as its temperature, density, and composition.

The white-colored regions are areas where light is emitted by sulfur. These are regions where fast-moving gas overtakes and collides with slow-moving gas that left the star at an earlier time, producing shock waves in the gas (the bright white edges on the sides facing the central star). The white blob with the crisp edge at upper right is an example of one of those shock waves.

NGC 6302 was imaged on July 27, 2009 with Hubble’s Wide Field Camera 3 in ultraviolet and visible light. Filters that isolate emissions from oxygen, helium, hydrogen, nitrogen, and sulfur from the planetary nebula were used to create this composite image.

These Hubble observations of the planetary nebula NGC 6302 are part of the Hubble Servicing Mission 4 Early Release Observations.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-09-2009 10:27 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote

Credit: NASA, ESA, and the Hubble SM4 ERO Team
Stephan's Quintet
Galactic Wreckage in Stephan's Quintet

A clash among members of a famous galaxy quintet reveals an assortment of stars across a wide color range, from young, blue stars to aging, red stars.

This portrait of Stephan’s Quintet, also known as Hickson Compact Group 92, was taken by the new Wide Field Camera 3 (WFC3) aboard NASA’s Hubble Space Telescope. Stephan’s Quintet, as the name implies, is a group of five galaxies. The name, however, is a bit of a misnomer. Studies have shown that group member NGC 7320, at upper left, is actually a foreground galaxy about seven times closer to Earth than the rest of the group.

Three of the galaxies have distorted shapes, elongated spiral arms, and long, gaseous tidal tails containing myriad star clusters, proof of their close encounters. These interactions have sparked a frenzy of star birth in the central pair of galaxies. This drama is being played out against a rich backdrop of faraway galaxies.

The image, taken in visible and infrared light, showcases WFC3’s broad wavelength range. The colors trace the ages of the stellar populations, showing that star birth occurred at different epochs, stretching over hundreds of millions of years. The camera’s infrared vision also peers through curtains of dust to see groupings of stars that cannot be seen in visible light.

NGC 7319, at top right, is a barred spiral with distinct spiral arms that follow nearly 180 degrees back to the bar. The blue specks in the spiral arm at the top of NGC 7319 and the red dots just above and to the right of the core are clusters of many thousands of stars. Most of the quintet is too far away even for Hubble to resolve individual stars.

Continuing clockwise, the next galaxy appears to have two cores, but it is actually two galaxies, NGC 7318A and NGC 7318B. Encircling the galaxies are young, bright blue star clusters and pinkish clouds of glowing hydrogen where infant stars are being born. These stars are less than 10 million years old and have not yet blown away their natal cloud. Far away from the galaxies, at right, is a patch of intergalactic space where many star clusters are forming.

NGC 7317, at bottom left, is a normal-looking elliptical galaxy that is less affected by the interactions.

Sharply contrasting with these galaxies is the dwarf galaxy NGC 7320 at upper left. Bursts of star formation are occurring in the galaxy’s disk, as seen by the blue and pink dots. In this galaxy, Hubble can resolve individual stars, evidence that NGC 7320 is closer to Earth. NGC 7320 is 40 million light-years from Earth. The other members of the quintet reside 290 million light-years away in the constellation Pegasus.

These farther members are markedly redder than the foreground galaxy, suggesting that older stars reside in their cores. The stars’ light also may be further reddened by dust stirred up in the encounters.

Spied by Edouard M. Stephan in 1877, Stephan’s Quintet is the first compact group ever discovered.

WFC3 observed the quintet in July and August 2009. The composite image was made by using filters that isolate light from the blue, green, and infrared portions of the spectrum, as well as emission from ionized hydrogen.

These Hubble observations are part of the Hubble Servicing Mission 4 Early Release Observations. NASA astronauts installed the camera during a servicing mission in May to upgrade and repair the 19-year-old Hubble telescope.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-09-2009 10:38 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote

Credit: NASA, ESA, and the Hubble SM4 ERO Team
Carina Nebula
Stars Bursting to Life in Chaotic Carina Nebula

These two images of a huge pillar of star birth demonstrate how observations taken in visible and in infrared light by NASA's Hubble Space Telescope reveal dramatically different and complementary views of an object.

The pictures demonstrate one example of the broad wavelength range of the new Wide Field Camera 3 (WFC3) aboard the Hubble telescope, extending from ultraviolet to visible to infrared light.

Composed of gas and dust, the pillar resides in a tempestuous stellar nursery called the Carina Nebula, located 7,500 light-years away in the southern constellation Carina. The pair of images shows that astronomers are given a much more complete view of the pillar and its contents when distinct details not seen at visible wavelengths are uncovered in near-infrared light.

The top image, taken in visible light, shows the top of the 3-light-year-long pillar, bathed in the glow of light from hot, massive stars off the top of the image. Scorching radiation and fast winds (streams of charged particles) from these stars are sculpting the pillar and causing new stars to form within it. Streamers of gas and dust can be seen flowing off the top of the structure.

Nestled inside this dense structure are fledgling stars. They cannot be seen in this image because they are hidden by a wall of gas and dust. Although the stars themselves are invisible, one of them is providing evidence of its existence. Thin puffs of material can be seen traveling to the left and to the right of a dark notch in the center of the pillar. The matter is part of a jet produced by a young star. Farther away, on the left, the jet is visible as a grouping of small, wispy clouds. A few small clouds are visible at a similar distance on the right side of the jet. Astronomers estimate that the jet is moving at speeds of up to 850,000 miles an hour. The jet's total length is more than 15 light-years.

In the image at bottom, taken in infrared light, the dense column and the surrounding greenish-colored gas all but disappear. Only a faint outline of the pillar remains. By penetrating the wall of gas and dust, the infrared vision of WFC3 reveals the infant star that is probably blasting the jet. Part of the jet nearest the star is more prominent in this view. These features can be seen because infrared light, unlike visible light, can pass through the dust.

Other infant stars inside the pillar also appear to emerge. Three examples are the bright star almost directly below the jet-producing star, a fainter one to its right, and a pair of stars at the top of the pillar. Winds and radiation from some of the stars are blowing away gas from their neighborhoods, carving out large cavities that appear as faint dark holes.

Surrounding the stellar nursery is a treasure chest full of stars, most of which cannot be seen in the visible-light image because dense gas clouds veil their light. Many of them are background stars.

Hubble's Wide Field Camera 3 observed the Carina Nebula July 24 through July 30, 2009. WFC3 was installed aboard Hubble in May 2009 during Servicing Mission 4. The composite image was made from filters that isolate emission from iron, magnesium, oxygen, hydrogen, and sulfur.

These Hubble observations of the Carina Nebula are part of the Hubble Servicing Mission 4 Early Release Observations.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 09-10-2009 11:18 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
If you missed yesterday's press conferences:

Philip
Member

Posts: 4803
From: Brussels, Belgium
Registered: Jan 2001

posted 11-10-2009 12:39 PM     Click Here to See the Profile for Philip   Click Here to Email Philip     Edit/Delete Message   Reply w/Quote
Excellent and amazing new images of the center of our galaxy... IYA2009 worthy.

Philip
Member

Posts: 4803
From: Brussels, Belgium
Registered: Jan 2001

posted 02-03-2010 08:01 AM     Click Here to See the Profile for Philip   Click Here to Email Philip     Edit/Delete Message   Reply w/Quote
NASA release
Suspected Asteroid Collision Leaves Trailing Debris

NASA's Hubble Space Telescope has observed a mysterious X-shaped debris pattern and trailing streamers of dust that suggest a head-on collision between two asteroids. Astronomers have long thought the asteroid belt is being ground down through collisions, but such a smashup has never been seen before.


Credit: NASA, ESA, and D. Jewitt

Asteroid collisions are energetic, with an average impact speed of more than 11,000 miles per hour, or five times faster than a rifle bullet. The comet-like object imaged by Hubble, called P/2010 A2, was first discovered by the Lincoln Near-Earth Asteroid Research, or LINEAR, program sky survey on Jan. 6. New Hubble images taken on Jan. 25 and 29 show a complex X-pattern of filamentary structures near the nucleus.

"This is quite different from the smooth dust envelopes of normal comets," said principal investigator David Jewitt of the University of California at Los Angeles. "The filaments are made of dust and gravel, presumably recently thrown out of the nucleus. Some are swept back by radiation pressure from sunlight to create straight dust streaks. Embedded in the filaments are co-moving blobs of dust that likely originated from tiny unseen parent bodies."

Hubble shows the main nucleus of P/2010 A2 lies outside its own halo of dust. This has never been seen before in a comet-like object. The nucleus is estimated to be 460 feet in diameter.

Normal comets fall into the inner regions of the solar system from icy reservoirs in the Kuiper belt and Oort cloud. As comets near the sun and warm up, ice near the surface vaporizes and ejects material from the solid comet nucleus via jets. But P/2010 A2 may have a different origin. It orbits in the warm, inner regions of the asteroid belt where its nearest neighbors are dry rocky bodies lacking volatile materials.

This leaves open the possibility that the complex debris tail is the result of an impact between two bodies, rather than ice simply melting from a parent body.

"If this interpretation is correct, two small and previously unknown asteroids recently collided, creating a shower of debris that is being swept back into a tail from the collision site by the pressure of sunlight," Jewitt said.

The main nucleus of P/2010 A2 would be the surviving remnant of this so-called hypervelocity collision.

"The filamentary appearance of P/2010 A2 is different from anything seen in Hubble images of normal comets, consistent with the action of a different process," Jewitt said. An impact origin also would be consistent with the absence of gas in spectra recorded using ground-based telescopes.

The asteroid belt contains abundant evidence of ancient collisions that have shattered precursor bodies into fragments. The orbit of P/2010 A2 is consistent with membership in the Flora asteroid family, produced by collisional shattering more than 100 million years ago. One fragment of that ancient smashup may have struck Earth 65 million years ago, triggering a mass extinction that wiped out the dinosaurs. But, until now, no such asteroid-asteroid collision has been caught "in the act."

At the time of the Hubble observations, the object was approximately 180 million miles from the sun and 90 million miles from Earth. The Hubble images were recorded with the new Wide Field Camera 3 (WFC3), which is capable of detecting house-sized fragments at the distance of the asteroid belt.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 02-04-2010 01:09 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Pluto's White, Dark-Orange and Charcoal-Black Terrain Captured by NASA's Hubble

NASA has released the most detailed and dramatic images ever taken of the distant dwarf planet Pluto. The images from NASA's Hubble Space Telescope show an icy, mottled, dark molasses-colored world undergoing seasonal surface color and brightness changes.

Pluto has become significantly redder, while its illuminated northern hemisphere is getting brighter. These changes are most likely consequences of surface ice melting on the sunlit pole and then refreezing on the other pole, as the dwarf planet heads into the next phase of its 248-year-long seasonal cycle. Analysis shows the dramatic change in color took place from 2000 to 2002.


Credit: NASA, ESA, and M. Buie/Southwest Research Institute

The Hubble pictures confirm Pluto is a dynamic world that undergoes dramatic atmospheric changes not simply a ball of ice and rock. These dynamic seasonal changes are as much propelled by the planet's 248-year elliptical orbit as by its axial tilt. Pluto is unlike Earth, where the planet's tilt alone drives seasons. Pluto's seasons are asymmetric because of its elliptical orbit. Spring transitions to polar summer quickly in the northern hemisphere, because Pluto is moving faster along its orbit when it is closer to the sun.

Ground-based observations, taken in 1988 and 2002 show the mass of the atmosphere doubled during that time. This may be because of warming and melting nitrogen ice. The new Hubble images are giving astronomers essential clues about the seasons on Pluto and the fate of its atmosphere.

When the Hubble pictures taken in 1994 are compared to those of 2002 and 2003, astronomers see evidence that the northern polar region has gotten brighter, while the southern hemisphere darkened. These changes hint at very complex processes affecting the visible surface.

The images will help planetary astronomers interpret more than three decades of Pluto observations from other telescopes.
"The Hubble observations are the key to tying together these other diverse constraints on Pluto and showing how it all makes sense by providing a context based on weather and seasonal changes, which opens other new lines of investigation," says principal investigator Marc Buie of the Southwest Research Institute in Boulder, Colo.

These Hubble images, taken by the Advanced Camera for Surveys, will remain the sharpest view of Pluto until NASA's New Horizons probe is within six months of its flyby during 2015. The Hubble images are invaluable for picking the planet's most interesting hemisphere for imaging by the New Horizons probe.

New Horizons will pass by Pluto so quickly that only one hemisphere will be photographed in detail. Particularly noticeable in the Hubble images is a bright spot that has been independently noted to be unusually rich in carbon monoxide frost. It is a prime target for New Horizons. "Everybody is puzzled by this feature," Buie said. New Horizons will get an excellent look at the boundary between this bright feature and a nearby region covered in pitch-black surface material.

"The Hubble images also will help New Horizons scientists better calculate the exposure time for each Pluto snapshot which is important for taking the most detailed pictures possible," Buie said. With no chance for re-exposures, accurate models for the surface of Pluto are essential for properly exposed images.

The Hubble images surface variations a few hundred miles across that are too coarse for understanding surface geology. But in terms of surface color and brightness, Hubble reveals a complex-looking world with white, dark-orange and charcoal-black terrain. The overall color is believed to be a result of ultraviolet radiation from the distant sun breaking up methane present on Pluto's surface, leaving behind a dark and red-carbon-rich residue.

The Hubble images are a few pixels wide. Through a technique called dithering, multiple, slightly offset pictures are combined through computer-image processing to synthesize a higher-resolution view than can be seen in a single exposure.

"This has taken four years and 20 computers operating continuously and simultaneously to accomplish," Buie said. Buie developed the special algorithms to sharpen the Hubble data. He plans to use Hubble's new Wide Field Camera 3 to make additional observations prior to the arrival of New Horizons.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 01-26-2011 01:36 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's Hubble Finds Most Distant Galaxy Candidate Ever Seen in Universe

Astronomers have pushed NASA's Hubble Space Telescope to its limits by finding what is likely to be the most distant object ever seen in the universe. The object's light traveled 13.2 billion years to reach Hubble, roughly 150 million years longer than the previous record holder. The age of the universe is approximately 13.7 billion years.

The tiny, dim object is a compact galaxy of blue stars that existed 480 million years after the big bang. More than 100 such mini-galaxies would be needed to make up our Milky Way. The new research offers surprising evidence that the rate of star birth in the early universe grew dramatically, increasing by about a factor of 10 from 480 million years to 650 million years after the big bang.

"NASA continues to reach for new heights, and this latest Hubble discovery will deepen our understanding of the universe and benefit generations to come,” said NASA Administrator Charles Bolden, who was the pilot of the space shuttle mission that carried Hubble to orbit. “We could only dream when we launched Hubble more than 20 years ago that it would have the ability to make these types of groundbreaking discoveries and rewrite textbooks.”

Astronomers don't know exactly when the first stars appeared in the universe, but every step farther from Earth takes them deeper into the early formative years when stars and galaxies began to emerge in the aftermath of the big bang.

"These observations provide us with our best insights yet into the earlier primeval objects that have yet to be found," said Rychard Bouwens of the University of Leiden in the Netherlands. Bouwens and Illingworth report the discovery in the Jan. 27 issue of the British science journal Nature.

This observation was made with the Wide Field Camera 3 starting just a few months after it was installed in the observatory in May 2009, during the last NASA space shuttle servicing mission to Hubble. After more than a year of detailed observations and analysis, the object was positively identified in the camera's Hubble Ultra Deep Field-Infrared data taken in the late summers of 2009 and 2010.

The object appears as a faint dot of starlight in the Hubble exposures. It is too young and too small to have the familiar spiral shape that is characteristic of galaxies in the local universe. Although its individual stars can't be resolved by Hubble, the evidence suggests this is a compact galaxy of hot stars formed more than 100-to-200 million years earlier from gas trapped in a pocket of dark matter.

"We're peering into an era where big changes are afoot," said Garth Illingworth of the University of California at Santa Cruz. "The rapid rate at which the star birth is changing tells us if we go a little further back in time we're going to see even more dramatic changes, closer to when the first galaxies were just starting to form."

The proto-galaxy is only visible at the farthest infrared wavelengths observable by Hubble. Observations of earlier times, when the first stars and galaxies were forming, will require Hubble’s successor, the James Webb Space Telescope (JWST).

The hypothesized hierarchical growth of galaxies -- from stellar clumps to majestic spirals and ellipticals -- didn't become evident until the Hubble deep field exposures. The first 500 million years of the universe's existence, from a z of 1000 to 10, is the missing chapter in the hierarchical growth of galaxies. It's not clear how the universe assembled structure out of a darkening, cooling fireball of the big bang. As with a developing embryo, astronomers know there must have been an early period of rapid changes that would set the initial conditions to make the universe of galaxies what it is today.

"After 20 years of opening our eyes to the universe around us, Hubble continues to awe and surprise astronomers," said Jon Morse, NASA's Astrophysics Division director at the agency's headquarters in Washington. "It now offers a tantalizing look at the very edge of the known universe -- a frontier NASA strives to explore."

Hubble is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington.

DChudwin
Member

Posts: 972
From: Lincolnshire IL USA
Registered: Aug 2000

posted 07-16-2011 10:10 AM     Click Here to See the Profile for DChudwin   Click Here to Email DChudwin     Edit/Delete Message   Reply w/Quote
2011 marks Neptune's first complete revolution around the Sun since it was discovered in 1846. To commemorate the occasion, NASA’s Hubble Space Telescope took images of Neptune showing its cloud cover on June 25-26. NASA has just released the pictures.
Neptune Completes Its First Circuit Around The Sun Since Its Discovery

These four images of Neptune were taken by NASA's Hubble Space Telescope during the planet's 16-hour rotation. The snapshots were taken at roughly four-hour intervals, offering a full view of the blue-green planet.

Today (July 12, 2011) marks Neptune's first orbit around the Sun since it was discovered nearly 165 years ago. These images were taken to commemorate the event.

The Hubble images, taken with the Wide Field Camera 3 on June 25-26, reveal high-altitude clouds in the northern and southern hemispheres. The clouds are composed of methane ice crystals.

In the Hubble images, absorption of red light by methane in Neptune's atmosphere gives the planet its distinctive aqua color. The clouds look pink because they are reflecting near-infrared light.

A faint, dark band near the bottom of the southern hemisphere is probably caused by a decrease in the hazes in the atmosphere that scatter blue light. The band was imaged by NASA's Voyager 2 spacecraft in 1989, and may be tied to circumpolar circulation created by high-velocity winds in that region. Neptune is the most distant major planet in our solar system.

German astronomer Johann Galle discovered the planet on September 23, 1846. At the time, the discovery doubled the size of the known solar system. The planet is 2.8 billion miles (4.5 billion kilometers) from the Sun, 30 times farther than Earth.

Under the Sun's weak pull at that distance, Neptune plods along in its huge orbit, slowly completing one revolution approximately every 165 years.

Sean Walker of Sky & Telescope prepared a video showing the rotation of Neptune.

While Voyager flew past Neptune in 1989, there are no current plans for any return in our lifetimes. The New Horizons spacecraft, on the way to Pluto, passes past Neptune's orbit but is nowhere near the blue planet.

Philip
Member

Posts: 4803
From: Brussels, Belgium
Registered: Jan 2001

posted 08-24-2011 03:53 AM     Click Here to See the Profile for Philip   Click Here to Email Philip     Edit/Delete Message   Reply w/Quote
Superb image of the Necklace nebula. STScI release
Hubble Offers a Dazzling View of the 'Necklace' Nebula

A giant cosmic necklace glows brightly in this NASA Hubble Space Telescope image.

The object, aptly named the Necklace Nebula, is a recently discovered planetary nebula, the glowing remains of an ordinary, Sun-like star. The nebula consists of a bright ring, measuring 12 trillion miles across, dotted with dense, bright knots of gas that resemble diamonds in a necklace. The knots glow brightly due to absorption of ultraviolet light from the central stars.

A pair of stars orbiting very close together produced the nebula, also called PN G054.2-03.4. About 10,000 years ago one of the aging stars ballooned to the point where it enveloped its companion star. This caused the larger star to spin so fast that much of its gaseous envelope expanded into space. Due to centrifugal force, most of the gas escaped along the star's equator, producing a dense ring. The embedded bright knots are the densest gas clumps in the ring.

The stars are furiously whirling around each other, completing an orbit in a little more than a day. (For comparison, Mercury, the closest planet to the Sun, takes 88 days to orbit the Sun.)

The Necklace Nebula is located 15,000 light-years away in the constellation Sagitta (the Arrow). In this composite image, taken on July 2, 2011, Hubble's Wide Field Camera 3 captured the glow of hydrogen (blue), oxygen (green), and nitrogen (red).

DChudwin
Member

Posts: 972
From: Lincolnshire IL USA
Registered: Aug 2000

posted 07-08-2013 07:19 AM     Click Here to See the Profile for DChudwin   Click Here to Email DChudwin     Edit/Delete Message   Reply w/Quote
Here is a compilation of some of the best images from the Hubble Telescope as chosen by The Baltimore Sun.
In the 23 years since the Hubble Space Telescope was launched, the satellite observatory has transmitted countless photographs to NASA astronomers. In recent months, the telescope has captured galaxies colliding, comets soaring through space and bright nebulas expanding.

Robert Pearlman
Editor

Posts: 27328
From: Houston, TX
Registered: Nov 1999

posted 07-11-2013 08:08 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA/STScI/ESA release
Hubble spots azure blue planet

Astronomers using the NASA/ESA Hubble Space Telescope have, for the first time, determined the true colour of a planet orbiting another star. If seen up close this planet, known as HD 189733b, would be a deep azure blue, reminiscent of Earth's colour as seen from space.

But that's where the similarities end. This "deep blue dot" is a huge gas giant orbiting very close to its host star. The planet's atmosphere is scorching with a temperature of over 1000 degrees Celsius, and it rains glass, sideways, in howling 7000 kilometre-per-hour winds. [1]

At a distance of 63 light-years from us, this turbulent alien world is one of the nearest exoplanets to Earth that can be seen crossing the face of its star. It has been intensively studied by Hubble and other telescopes, and its atmosphere has been found to be dramatically changeable and exotic, with hazes and violent flares. Now, this planet is the subject of an important first: the first measurement of an exoplanet's visible colour.

"This planet has been studied well in the past, both by ourselves and other teams," says Frédéric Pont of the University of Exeter, UK, leader of the Hubble observing programme and an author of this new paper. "But measuring its colour is a real first — we can actually imagine what this planet would look like if we were able to look at it directly."

In order to measure what this planet would look like to our eyes, the astronomers measured how much light was reflected off the surface of HD 189733b — a property known as albedo. [2]

HD 189733b is faint and close to its star. To isolate the planet's light from this starlight, the team used Hubble's Space Telescope Imaging Spectrograph (STIS) to peer at the system before, during, and after the planet passed behind its host star as it orbited. As it slipped behind its star, the light reflected from the planet was temporarily blocked from view, and the amount of light observed from the system dropped. But this technique also shows how the light changes in other ways — for example, its colour. [3]

"We saw the brightness of the whole system drop in the blue part of the spectrum when the planet passed behind its star," explains Tom Evans of the University of Oxford, UK, first author of the paper. "From this, we can gather that the planet is blue, because the signal remained constant at the other colours we measured."

The planet's azure blue colour does not come from the reflection of a tropical ocean, but is due to a hazy, turbulent atmosphere thought to be laced with silicate particles, which scatter blue light. [4] Earlier observations using different methods have reported evidence for scattering of blue light on the planet, but these most recent Hubble observations give robust confirming evidence, say the researchers.

HD 189733b presented a favourable case for these kinds of measurements as it belongs to a class of planets known as "hot Jupiters". These massive planets are similar in size to the gas giants in the Solar System, but instead lie very close to their parent star — this size and proximity to their star make them perfect subjects for exoplanet hunting. We know that hot Jupiters are numerous throughout the Universe. As we do not have one close to home in our own Solar System, studies of planets like HD 189733b are important to help us understand these dramatic objects.

"It's difficult to know exactly what causes the colour of a planet's atmosphere, even for planets in the Solar System," says Pont [5]. "But these new observations add another piece to the puzzle over the nature and atmosphere of HD 189733b. We are slowly painting a more complete picture of this exotic planet."

Notes

  1. In 2007 NASA's Spitzer Space Telescope measured the infrared light from the planet, producing one of the first ever temperature maps for an exoplanet. The map shows that day- and night-side temperatures differ by about 260 degrees Celsius, causing fierce winds to roar across the planet. The condensation temperature of the silicates (over 1300 degrees Celsius) mean these particles could form very small grains of glass in the atmosphere.

  2. Albedo is a measure of how much incident radiation is reflected. The greater the albedo, the greater the amount of light reflected. This value ranges from 0 to 1, with 1 being perfect reflectivity and 0 being a completely black surface. The Earth has an albedo of around 0.4.

  3. This technique is possible because the planet's orbit is tilted edge-on as viewed from Earth, so that it routinely passes in front of and behind the star. When the planet passes behind its host star, the light received from the system drops by about one part in 10 000.

  4. The deep blue colour of HD 189733b is consistent with the "red sunset of HD 189733b" result from the transit spectrum (heic0720). If sodium absorbs red light and dust scatters red light, the atmosphere will redden light shining through it, but will appear blue in reflected light.

  5. The colours of Jupiter and Venus are both due to unknown particles within the atmospheres of the planets. Earth looks blue from space because the oceans absorb red and green wavelengths more strongly than blue ones, and reflect the blueish hue of our sky. The shorter blue wavelengths of sunlight are selectively scattered by oxygen and nitrogen molecules in our atmosphere via a process called Rayleigh scattering.

All times are CT (US)

next newest topic | next oldest topic

Administrative Options: Close Topic | Archive/Move | Delete Topic
Post New Topic  Post A Reply
Hop to:

Contact Us | The Source for Space History & Artifacts

Copyright 1999-2012 collectSPACE.com All rights reserved.


Ultimate Bulletin Board 5.47a





advertisement