Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Forum:Satellites - Robotic Probes
Topic:NASA's Europa Clipper to flyby Jupiter's moon
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

"Today we're taking an exciting step from concept to mission, in our quest to find signs of life beyond Earth," said John Grunsfeld, associate administrator for NASA's Science Mission Directorate in Washington. "Observations of Europa have provided us with tantalizing clues over the last two decades, and the time has come to seek answers to one of humanity's most profound questions."

NASA's Galileo mission to Jupiter in the late 1990s produced strong evidence that Europa, about the size of Earth's moon, has an ocean beneath its frozen crust. If proven to exist, this global ocean could hold more than twice as much water as Earth. With abundant salt water, a rocky sea floor, and the energy and chemistry provided by tidal heating, Europa may have the ingredients needed to support simple organisms.

The mission plan calls for a spacecraft to be launched to Jupiter in the 2020s, arriving in the distant planet's orbit after a journey of several years. The spacecraft would orbit the giant planet about every two weeks, providing many opportunities for close flybys of Europa. The mission plan includes 45 flybys, during which the spacecraft would image the moon's icy surface at high resolution and investigate its composition and the structure of its interior and icy shell.

NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California, has been assigned the responsibility of managing the project. JPL has been studying the multiple-flyby mission concept, in collaboration with the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland, since 2011.

Instruments selected for the Europa mission's scientific payload were announced by NASA on May 26. Institutions supplying instruments include APL; JPL; Arizona State University, Tempe; the University of Texas at Austin; Southwest Research Institute, San Antonio and the University of Colorado, Boulder.

"It's a great day for science," said Joan Salute, Europa program executive at NASA Headquarters in Washington. "We are thrilled to pass the first major milestone in the lifecycle of a mission that will ultimately inform us on the habitability of Europa."

SpaceAholicAkon is being discussed as a possible rider on this mission.
Akon is a 40-centimeter-long, bullet-shaped probe. After separating from NASA's orbiter, Akon would be carried closer to Europa by a little spacecraft with thrusters. This will help aim the probe, which needs to strike Europa's surface at a 90-degree angle. This ferrying system could include an imager and a mass spectrometer to analyze Europa's thin exosphere.

The probe itself, ejected from the space ferry at a height of 35 kilometers (or about 22 miles), could include a variety of instruments, including an imager, equipment to test for conditions that might be conducive to life, and a seismometer to look for moonquakes and to probe the depth of Europa's icy crust.

Robert PearlmanNASA release
NASA's Europa Flyby Mission Moves into Design Phase

A mission to examine the habitability of Jupiter's ocean-bearing moon Europa is taking one step closer to the launchpad, with the recent completion of a major NASA review.

On Feb. 15, NASA's Europa multiple-flyby mission successfully completed its Key Decision Point-B review. This NASA decision permits the mission to move forward into its preliminary design phase, known as "Phase B," beginning on Feb. 27.

A highlight of Phase A was the selection and accommodation of 10 instruments being developed to study the scientific mysteries of Europa. The new mission phase is planned to continue through September 2018, and will result in the completion of a preliminary design for the mission's systems and subsystems. Some testing of spacecraft components, including solar cells and science instrument detectors, has already been underway during Phase A, and this work is planned to continue into Phase B.

In addition, during Phase B subsystem vendors will be selected, as well as prototype hardware elements for the science instruments. Spacecraft subassemblies will be built and tested as well.

The Europa mission spacecraft is being planned for launch in the 2020s, arriving in the Jupiter system after a journey of several years. The spacecraft would orbit Jupiter as frequently as every two weeks, providing many opportunities for close flybys of Europa. The mission plan includes 40 to 45 flybys in the prime mission, during which the spacecraft would image the moon's icy surface at high resolution and investigate its composition and the structure of its interior and icy shell.

The life cycle of a NASA science mission includes several key phases. At each step, missions must successfully demonstrate that they have met the agency's requirements in order to indicate readiness to move forward into the next phase. Phase B includes preliminary design work, while phases C and D include final design, spacecraft fabrication, assembly and testing, and launch.

Robert PearlmanNASA release
NASA Mission Named 'Europa Clipper'

NASA's upcoming mission to investigate the habitability of Jupiter's icy moon Europa now has a formal name: Europa Clipper.

The moniker harkens back to the clipper ships that sailed across the oceans of Earth in the 19th century. Clipper ships were streamlined, three-masted sailing vessels renowned for their grace and swiftness. These ships rapidly shuttled tea and other goods back and forth across the Atlantic Ocean and around the globe.

In the grand tradition of these classic ships, the Europa Clipper spacecraft would sail past Europa at a rapid cadence, as frequently as every two weeks, providing many opportunities to investigate the moon up close. The prime mission plan includes 40 to 45 flybys, during which the spacecraft would image the moon's icy surface at high resolution and investigate its composition and the structure of its interior and icy shell.

Europa has long been a high priority for exploration because it holds a salty liquid water ocean beneath its icy crust. The ultimate aim of Europa Clipper is to determine if Europa is habitable, possessing all three of the ingredients necessary for life: liquid water, chemical ingredients, and energy sources sufficient to enable biology.

"During each orbit, the spacecraft spends only a short time within the challenging radiation environment near Europa. It speeds past, gathers a huge amount of science data, then sails on out of there," said Robert Pappalardo, Europa Clipper project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California.

Previously, when the mission was still in the conceptual phase, it was sometimes informally called Europa Clipper, but NASA has now adopted that name as the formal title for the mission.

The mission is being planned for launch in the 2020s, arriving in the Jupiter system after a journey of several years.

Robert PearlmanNASA release
Europa Clipper's Mission to Jupiter's Icy Moon Confirmed

An icy ocean world in our solar system that could tell us more about the potential for life on other worlds is coming into focus with confirmation of the Europa Clipper mission's next phase. The decision allows the mission to progress to completion of final design, followed by the construction and testing of the entire spacecraft and science payload.

"We are all excited about the decision that moves the Europa Clipper mission one key step closer to unlocking the mysteries of this ocean world," said Thomas Zurbuchen, associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. "We are building upon the scientific insights received from the flagship Galileo and Cassini spacecraft and working to advance our understanding of our cosmic origin, and even life elsewhere."

The mission will conduct an in-depth exploration of Jupiter's moon, Europa, and investigate whether the icy moon could harbor conditions suitable for life, honing our insights into astrobiology. To develop this mission in the most cost-effective fashion, NASA is targeting to have the Europa Clipper spacecraft complete and ready for launch as early as 2023. The agency baseline commitment, however, supports a launch readiness date by 2025.

NASA's Jet Propulsion Laboratory in Pasadena, California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins University Applied Physics Laboratory for the Science Mission Directorate. Europa Clipper is managed by the Planetary Missions Program Office at NASA's Marshall Space Flight Center in Huntsville, Alabama.

Robert PearlmanNASA release
NASA Awards Launch Services Contract for the Europa Clipper Mission

NASA has selected Space Exploration Technologies Corp. (SpaceX) of Hawthorne, California, to provide launch services for Earth's first mission to conduct detailed investigations of Jupiter's moon Europa.

The Europa Clipper mission will launch in October 2024 on a Falcon Heavy rocket from Launch Complex 39A at NASA's Kennedy Space Center in Florida. The total contract award amount for launch services is approximately $178 million.

Europa Clipper will conduct a detailed survey of Europa and use a sophisticated suite of science instruments to investigate whether the icy moon has conditions suitable for life. Key mission objectives are to produce high-resolution images of Europa's surface, determine its composition, look for signs of recent or ongoing geological activity, measure the thickness of the moon's icy shell, search for subsurface lakes, and determine the depth and salinity of Europa's ocean.

NASA's Launch Services Program at Kennedy will manage the Europa Clipper launch service. NASA's Jet Propulsion Laboratory in Southern California leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA's Science Mission Directorate in Washington. The Planetary Missions Program Office at NASA's Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.

Robert PearlmanNASA release
A Few Steps Closer to Europa: Spacecraft Hardware Makes Headway

The hardware that makes up NASA's Europa Clipper spacecraft is rapidly taking shape, as engineering components and instruments are prepared for delivery to the main clean room at the agency's Jet Propulsion Laboratory in Southern California. In workshops and labs across the country and in Europe, teams are crafting the complex pieces that make up the whole as mission leaders direct the elaborate choreography of building a flagship mission.

Above: Engineers at NASA's Goddard Space Flight Center in Greenbelt, Maryland, prepare for a propellant tank to be inserted into the cylinder in the background at left. The cylinder is one of two that make up Europa Clipper's propulsion module. (NASA/GSFC Denny Henry)

The massive 10-foot-tall (3-meter-tall) propulsion module recently moved from NASA's Goddard Space Flight Center in Greenbelt, Maryland, to the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, where engineers will install electronics, radios, antennas, and cabling. The spacecraft's thick aluminum vault, which will protect Europa Clipper's electronics from Jupiter's intense radiation, is nearing completion at JPL. The building and testing of the science instruments at universities and partner institutions across the country continue as well.

The mission is also gearing up for its System Integration Review in late 2021, when NASA will review plans for assembling and testing Europa Clipper, and its instruments are inspected in detail.

Above: Engineers and technicians in a clean room at NASA's Jet Propulsion Laboratory display the thick-walled aluminum vault they helped build for the Europa Clipper spacecraft. The vault will protect the spacecraft's electronics from Jupiter's intense radiation. In the background is a duplicate vault. (NASA/JPL-Caltech)

"It's really exciting to see the progression of flight hardware moving forward this year as the various elements are put together bit by bit and tested," said Europa Clipper Project Manager Jan Chodas of JPL. "The project team is energized and more focused than ever on delivering a spacecraft with an exquisite instrument suite that promises to revolutionize our knowledge of Europa."

Jupiter's icy moon Europa, which harbors an internal ocean with twice the amount of water in Earth's oceans combined, may currently have conditions suitable for supporting life. Europa Clipper will carry a broad suite of science instruments into orbit around Jupiter and conduct multiple close flybys of Europa to gather data on its atmosphere, surface, and interior.

Hardware in the Works

Above: Engineers in a clean room at NASA's Jet Propulsion Laboratory build the nadir deck for NASA's Europa Clipper spacecraft. The deck will stabilize the spacecraft's sensors and help the mission team ensure its instruments are oriented correctly. (NASA/JPL-Caltech)

Delivery of the towering propulsion module from Goddard to APL marked a milestone for that major piece of hardware. APL built the twin cylinders that make up the module and shipped them to JPL, where technicians added thermal tubing that will carry coolant to keep the spacecraft from getting too hot or too cold in deep space. From there, the cylinders went to Goddard, where propellant tanks were installed inside of them and 16 rocket engines were attached to the outside.

Another large piece of hardware nearing completion is the spacecraft's radiator, which connects to the thermal tubing. The width and length of a twin-size bed, the radiator's 3-inch-thick (7.5-centimeter-thick) panel has the crucial job of radiating heat out into space to keep the spacecraft within its operating temperature range. It is covered with louvers that open and close automatically as the spacecraft disperses more or less heat to regulate its temperature.

Meanwhile, work at APL begins to integrate the propulsion module and the telecommunications hardware (electronics, radios, antennas, and cabling). And construction of a high-gain antenna – a dish nearly 10 feet (3 meters) wide – is underway at vendor Applied Aerospace Structures Corporation in Stockton, California. It will be delivered to APL this year, where it will be integrated before the entire module comes back to JPL a final time. By the spring of 2022, the huge element will join other Europa Clipper hardware streaming into JPL's main high bay for assembly, test, and launch operations (ATLO).

One of the first elements in place for ATLO will be the spacecraft's vault, now entering its final stage of fabrication at JPL. Eventually, the vault will be bolted to the top of the propulsion module and affixed with miles of cabling so that the power box and computer inside can communicate with the other subsystems.

Attached to the vault will be a deck, also completing assembly at JPL, that will support many of the instrument sensors. Called the nadir deck, it stabilizes the spacecraft's sensors and helps ensure they are oriented correctly.

Science Instruments Nearing Completion

At the same time that the spacecraft body, electronics, and engineering subsystems come together, nine science instruments are being assembled and tested across a network of clean rooms at NASA centers, partner institutions, and private industry vendors. The suite of instruments will investigate everything from the depth of the internal ocean and its salinity to the thickness of the ice crust and potential plumes that may be venting subsurface water into space.

Above: Europa Clipper's spectrometer, Mapping Imaging Spectrometer for Europa (MISE), is seen in the midst of assembly in a clean room at NASA's Jet Propulsion Laboratory. MISE will analyze infrared light reflected from Europa and map its surface composition in detail. (NASA/JPL-Caltech)

Slated to be delivered to ATLO from late 2021 through mid-2022, the instruments, which include cameras to capture surface geology in detail, are undergoing extensive testing. Engineers want to be sure the instruments can communicate correctly with the flight computer, spacecraft software, and the power subsystem, to be able to respond to commands and transmit data back to Earth.

Mission leaders acknowledge that COVID-19 challenges have stretched the project and instrument teams as they find ways to meet deadlines when parts are delayed or staffing is short. Engineers, technicians, and scientists continue to power through.

"What we've seen, even in the midst of the pandemic, is that the engineering and instrument teams are responding very well. The pandemic has affected mission schedule, but the teams are tackling the challenges, communicating openly, and displaying tremendous flexibility to keep the hardware on track for our October 2024 launch," said Europa Clipper Deputy Project Manager Jordan Evans. "We see it day in and day out, across the team, and it's fantastic."

Robert PearlmanNASA release
NASA Begins Assembly of Europa Clipper Spacecraft

When it's fully assembled, NASA's Europa Clipper will be as large as an SUV with solar arrays long enough to span a basketball court – all the better to help power the spacecraft during its journey to Jupiter's icy moon Europa. And just about every detail of the spacecraft will have been hand-crafted.

Above: Clockwise from left: the propulsion module for NASA's Europa Clipper, the ultraviolet spectrograph (called Europa-UVS), the high-gain antenna, and an illustration of the spacecraft. (NASA/JPL-Caltech / Johns Hopkins APL)

The assembly effort is already underway in clean rooms at the agency's Jet Propulsion Laboratory in Southern California. Now, engineering components and science instruments are beginning to stream in from across the country and Europe. Before year's end, most of the flight hardware – including a suite of nine science instruments – is expected to be complete.

The main body of the spacecraft is a giant 10-foot-tall (3-meter-tall) propulsion module, designed and constructed by Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, with help from NASA's Goddard Space Flight Center in Greenbelt, Maryland, and JPL. The module, fitted with electronics, radios, cabling, and the propulsion subsystem, will ship to JPL this spring. Europa Clipper's 10-foot-wide (3-meter-wide) high-gain antenna also will be arriving at the Lab soon.

"We're moving into the phase where we see the pieces all come together as a flight system," said Europa Clipper Project Manager Jan Chodas of JPL. "It will be very exciting to see the hardware, the flight software, and the instruments get integrated and tested. To me, it's the next level of discovery. We'll learn how the system we designed will actually perform."

Above: An engineer inspects the radio frequency (RF) panel of NASA's Europa Clipper in a cleanroom at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. (Johns Hopkins APL)

Europa, which scientists are confident harbors an internal ocean with twice the amount of water in Earth's oceans combined, may currently have conditions suitable for supporting life. Europa Clipper will orbit Jupiter and conduct multiple close flybys of Europa to gather data on the moon's atmosphere, surface, and interior. Its sophisticated payload will investigate everything from the depth and salinity of the ocean to the thickness of the ice crust to the characteristics of potential plumes that may be venting subsurface water into space.

The first science instrument to be completed was delivered to JPL last week by a team at Southwest Research Institute in San Antonio, Texas. The ultraviolet spectrograph, called Europa-UVS, will search above the surface of Europa for signs of plumes. The instrument collects ultraviolet light, then separates the wavelengths of that light to help determine the composition of the moon's surface and gases in the atmosphere.

As each instrument arrives at JPL, it will be integrated with the spacecraft and re-tested. Engineers need to be sure the instruments can communicate with the flight computer, spacecraft software, and the power subsystem.

Once all the components have been integrated to form the large flight system, Europa Clipper will move to JPL's enormous thermal vacuum chamber for testing that simulates the harsh environment of deep space. There also will be intense vibration testing to ensure Europa Clipper can withstand the jostling of launch. Then it's off to Cape Canaveral, Florida, for an October 2024 launch.

For the leaders of this mission, seeing the engineering components come together with the fleet of instruments will be especially moving, knowing how hard their teams have pushed to work through the coronavirus pandemic.

"I don't know how I'll feel, seeing this come together. I suspect it will be somewhat overwhelming," said JPL's Robert Pappalardo, the Europa Clipper project scientist. "It's happening – it's becoming real. It's becoming tangible."

At the same time, the level of difficulty kicks up several notches as the layers of the project merge.

"All of the parallel paths of hardware and software development will start to join together in a way that's very visible to the team," said JPL's Jordan Evans, the deputy project manager. "Everybody's eyes turn toward the integrated system that's coming together, which is exciting."

Robert PearlmanNASA release
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

The agency's mission to explore Jupiter's icy moon takes a big step forward as engineers deliver a major component of the spacecraft.

Above: Engineers and technicians inspect the main body of NASA’s Europa Clipper spacecraft after it was built and delivered by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, to the agency’s Jet Propulsion Laboratory in Southern California in early June. (NASA/JPL-Caltech/Johns Hopkins APL/Ed Whitman)

The main body of NASA's Europa Clipper spacecraft has been delivered to the agency's Jet Propulsion Laboratory in Southern California. Over the next two years there, engineers and technicians will finish assembling the craft by hand before testing it to make sure it can withstand the journey to Jupiter's icy moon Europa.

Above: Engineers and technicians unwrap and inspect the main body of NASA’s Europa Clipper spacecraft after it was built and delivered by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, to the agency’s Jet Propulsion Laboratory in Southern California in early June. (NASA/JPL-Caltech/Johns Hopkins APL/Ed Whitman)

The spacecraft body is the mission's workhorse. Standing 10 feet (3 meters) tall and 5 feet (1.5 meters) wide, it's an aluminum cylinder integrated with electronics, radios, thermal loop tubing, cabling, and the propulsion system. With its solar arrays and other deployable equipment stowed for launch, Europa Clipper will be as large as an SUV; when extended, the solar arrays make the craft the size of a basketball court. It is the largest NASA spacecraft ever developed for a planetary mission.

"It's an exciting time for the whole project team and a huge milestone," said Jordan Evans, the mission's project manager at JPL. "This delivery brings us one step closer to launch and the Europa Clipper science investigation."

Above: The main body of NASA’s Europa Clipper spacecraft is seen in its shipping container, just after arriving aboard a C-17 cargo plane at March Air Reserve Base in Riverside County, California. (NASA/JPL-Caltech/Johns Hopkins APL/Ed Whitman)

Set to launch in October 2024, Europa Clipper will conduct nearly 50 flybys of Europa, which scientists are confident harbors an internal ocean containing twice as much water as Earth's oceans combined. And the ocean may currently have conditions suitable for supporting life. The spacecraft's nine science instruments will gather data on Europa's atmosphere, surface, and interior – information that scientists will use to gauge the depth and salinity of the ocean, the thickness of the ice crust, and potential plumes that may be venting subsurface water into space.

Those instruments already have begun arriving at JPL, where the phase known as assembly, test, and launch operations has been underway since March. The ultraviolet spectrograph, called Europa-UVS, arrived in March. Next came the spacecraft's thermal emission imaging instrument, E-THEMIS, delivered by the scientists and engineers leading its development at Arizona State University. E-THEMIS is a sophisticated infrared camera designed to map Europa's temperatures and help scientists find clues about the moon's geological activity – including regions where liquid water may be near the surface.

By the end of 2022, most of the flight hardware and the remainder of the science instruments are expected to be complete.

The Whole Package

The Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, designed Europa Clipper's body in collaboration with JPL and NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The flight system designed, built, and tested by APL – using a team of hundreds of engineers and technicians – was the physically largest system ever built by APL," said APL's Tom Magner, the mission's assistant project manager.

The work on the main module continues now at JPL.

"What arrived at JPL represents essentially an assembly phase unto itself. Under APL's leadership, this delivery includes work by that institution and two NASA centers. Now the team will take the system to an even higher level of integration," said Evans.

The main structure is actually two stacked aluminum cylinders dotted with threaded holes for bolting on the spacecraft's cargo: the radio frequency module, radiation monitors, propulsion electronics, power converters, and wiring. The radio frequency subsystem will power eight antennas, including an enormous high-gain antenna that measures 10 feet (3 meters) wide. The structure's web of electrical wires and connectors, called the harness, weighs 150 pounds (68 kilograms) by itself; if stretched out, it would run almost 2,100 feet (640 meters) – twice the perimeter of a football field.

See more images of Europa Clipper coming together.

The heavy-duty electronics vault, built to withstand the intense radiation of the Jupiter system, will be integrated with the main spacecraft structure along with the science instruments.

Inside the main body of the spacecraft are two tanks – one to hold fuel, one for oxidizer – and the tubing that will carry their contents to an array of 24 engines, where they will combine to create a controlled chemical reaction that produces thrust.

"Our engines are dual purpose," said JPL's Tim Larson, the deputy project manager. "We use them for big maneuvers, including when we approach Jupiter and need a large burn to be captured in Jupiter's orbit. But they're also designed for smaller maneuvers to manage the attitude of the spacecraft and to fine tune the precision flybys of Europa and other solar system bodies along the way."

Those big and small maneuvers will come into play a lot during the six-year, 1.8-billion-mile (2.9-billion-kilometer) journey to this ocean world, which Europa Clipper will begin investigating in earnest in 2031.

Contact Us | The Source for Space History & Artifacts

Copyright 2022 collectSPACE.com All rights reserved.





advertisement