Space News
space history and artifacts articles

space history discussion forums

worldwide astronaut appearances

selected space history documents

Forum:Commercial Space - Military Space
Topic:SpaceX Dragon CRS-26 flight to space station
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:

*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

The Falcon 9 first stage booster (B1076) supporting this mission is making its first flight. Following stage separation, SpaceX will attempt to recover the rocket's first stage on an autonomous drone ship in the Atlantic Ocean.

The CRS-26 Dragon is also new. It will return to Earth with research and cargo after spending about four weeks at the space station.

Robert PearlmanNASA release
Moon Microscope, Solar Arrays Launch on NASA's SpaceX Cargo Ship

SpaceX's 26th commercial resupply mission for NASA is on its way to the International Space Station.

Carrying more than 7,700 pounds of science experiments, crew supplies, and other cargo, the SpaceX Dragon spacecraft launched on the Falcon 9 rocket at 2:20 p.m. EST Saturday (Nov. 26) from NASA's Kennedy Space Center in Florida.

The cargo spacecraft is scheduled to autonomously dock at the space station around 7:30 a.m. Sunday, Nov. 27, and remain at the station for about 45 days.

Among the science experiments Dragon is delivering to the space station are:

Picture of Health

Moon Microscope tests a kit for in-flight medical diagnosis that includes a portable hand-held microscope and a small self-contained blood sample staining device. An astronaut collects and stains a blood sample, obtains images with the microscope, and transmits images to the ground, where flight surgeons use them to diagnose illness and prescribe treatment.

The kit could provide diagnostic capabilities for crew members in space or on the surface of the Moon or Mars, as well as the ability to test water, food, and surfaces for contamination. The hardware also may enable improved medical monitoring on upcoming Artemis missions.

Adding Solar Power

Two International Space Station Roll-Out Solar Arrays, or iROSAs, launched aboard SpaceX's 22nd commercial resupply mission for the agency and were installed in 2021. These solar panels, which roll out using stored kinetic energy, expand the energy-production capabilities of the space station. The second set launching in the Dragon's trunk, once installed, will be a part of the plan to provide a 20% to 30% increase in power for space station research and operations.

These arrays, the second of three packages, will complete the upgrade of half the station's power channels. iROSA technology was first tested on the space station in 2017. Roll-out solar array technology was used on NASA's Double Asteroid Redirection Test mission and is planned for use on Gateway, a future lunar space station and vital component of NASA's Artemis program. The iROSA upgrades use the space station as a proving ground for the technology and research needed to explore farther into space.

Big Hopes for Small Tomatoes

A continuous source of nutritious food is essential for long-duration exploration missions, and the typical pre-packaged astronaut diet may need to be supplemented by fresh foods produced in space. Researchers have been testing a plant growth unit on station known as Veggie and have successfully grown a variety of leafy greens. Veg-05, the next step in that work, focuses on growing dwarf tomatoes.

Building Bigger Structures

On Earth, gravity deforms large objects such as the beams used in large-scale construction. Microgravity enables fabrication of longer and thinner structures without this deformation. Extrusion demonstrates a technology using liquid resin to create shapes and forms that cannot be created on Earth. Photocurable resin, which uses light to harden the material into its final form, is injected into pre-made flexible forms and a camera captures footage of the process. The capability for using these forms could enable in-space construction of structures such as space stations, solar arrays, and equipment.

The Space Exploration Initiative supports a range of microgravity and lunar research across science, engineering, art, and design. The experiment is packed inside a Nanoracks Black Box with several other experiments from the Massachusetts Institute of Technology Media Lab and is sponsored by the ISS National Lab.

On-Demand Nutrients

Supplying adequate nutrition is a major challenge to maintaining crew health on future long-duration space missions. Many vitamins, nutrients, and pharmaceuticals have limited shelf-life, and the ability to make such compounds on-demand could help maintain crew health and well-being. BioNutrients-2 tests a system for producing key nutrients from yogurt, a fermented milk product known as kefir, and a yeast-based beverage.

The investigation kicks off phase two of the five-year BioNutrients program, headed by NASA's Ames Research Center and managed by Game Changing Development in NASA's Space Technology Mission Directorate. The program began with the launch of BioNutrients-1 in 2019. BioNutrients-2 employs a smaller system with a heated incubator that promotes growth of beneficial organisms.

The researchers also are working to find efficient ways to use local resources to make bulk products such as plastics, construction binders, and feedstock chemicals. Such technologies are designed to reduce launch costs and increase self-sufficiency, extending the horizons of human exploration.

Easing Gravity Transitions

Travelers to space all face the transition from one gravity field to another. On future exploration missions, astronauts may encounter three different gravity fields: weightlessness while traveling in space, the gravity of another planet, and Earth's gravity when they return. These transitions can affect spatial orientation, head-eye and hand-eye coordination, balance, and locomotion, and cause some crew members to experience space motion sickness.

The Falcon Goggles hardware captures high-speed video of a subject's eyes, providing precise data on ocular alignment and balance.

These are just a few of the hundreds of investigations currently conducted aboard the orbiting laboratory in the areas of biology and biotechnology, physical sciences, and Earth and space science. Advances in these areas will help keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars.

Robert Pearlman
Dragon Docks to Station

SpaceX's Dragon cargo spacecraft autonomously docked to the space-facing port of the International Space Station's Harmony module on Sunday (Nov. 27) at 7:39 a.m. EST (1239 GMT) as the two spacecraft were traveling over the Pacific Ocean.

NASA astronauts and Expedition 68 crewmates Nicole Mann and Josh Cassada monitored the docking operations from the station.

Robert Pearlman
Dragon departs space station

The CRS-26 SpaceX Dragon spacecraft undocked from the zenith port of the International Space Station's Harmony module at 5:05 p.m. EST on Monday (Jan. 9). At the time of undocking, the station was flying about 259 miles over the Pacific Ocean.

After reentering Earth's atmosphere, the spacecraft will splash down off the coast of Florida on Wednesday (Jan. 11).

Robert PearlmanSpaceX update on Wednesday, Jan. 11 at 5:19 a.m. EST (via Twitter):
Splashdown of Dragon confirmed, completing SpaceX's 26th cargo resupply mission to the space station.

View from the recovery vessel as Dragon returned to Earth.

Contact Us | The Source for Space History & Artifacts

Copyright 2023 All rights reserved.