Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Forum:Commercial Space - Military Space
Topic:Astrobotic CubeRover robotic lunar rovers
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

Named for its modular, scalable design, the CubeRover was co-developed with Carnegie Mellon University, with input from a NASA team at Kennedy, and marks the completion of work on NASA's $750,000 Small Business Innovation Research (SBIR) Phase 2 contract to develop a lightweight rover with flight characteristics.

Astrobotic has since refined and commercialized the CubeRover product line with the goal of supporting mobility as a service with a variety of diverse payloads, making lunar access easier for smaller tech demonstrations and scientific investigations. The rover is also designed to be integrated onto multiple lunar landers for voyages to the Moon, facilitating its inclusion on a wide variety of future space missions.

Designing the compact CubeRover presented an array of engineering challenges for the Astrobotic and Carnegie Mellon teams. Among many concerns, the teams were tasked with regulating the rover's temperature in extreme climate fluctuations, keeping its mass minimal, and ensuring the rover maintained optimum mobility for instruments operating on the rover. The teams created a robust thermal design able to endure temperatures ranging from space (-455ºF) to the lunar surface (260ºF). The result is the lightest commercial planetary rover ever created. The CubeRover was also outfitted with a calibrated camera used to orient itself relative to known objects on the lunar surface, such as Astrobotic's Peregrine lander. The ability for the rover's operation team to recognize its position on the Moon augments the value of the data, allowing payload customers to make informed decisions about where to travel next.

"Because our CubeRover is so light — in the four kilogram range — it dramatically reduces flight cost, making the Moon more accessible to more customers," says Mike Provenzano, Astrobotic's Director of Planetary Mobility. ""We're also including industry standard interfaces throughout the rover to simplify the payload integration process."

In the coming months, a team at Kennedy's Granular Mechanics and Regolith Operations (GMRO) Laboratory will conduct a battery of mobility tests on the CubeRover in their analogous lunar regolith simulant — a terrain that closely mimics the mechanical properties of the lunar surface. These tests will measure the slopes, gaps, and other surface irregularities the rover can navigate. Drop testing will ensure the rover is not at risk of tipping over during its deployment from a lander to the lunar surface.

Astrobotic's work on CubeRover will continue through its $2M Tipping Point contract with NASA, concluding in February 2022. This program funds the flight qualification of the 2U CubeRover product line, and also outfits the rover with a set of advanced features including a lighter all-wheel-drive system, a solar array for recharging, adaptive image compression, and additional interfaces to support a wider variety of landers and payloads.

Robert PearlmanAstrobotic release
Astrobotic’s CubeRover Completes Successful Mobility Testing

Astrobotic’s CubeRover successfully completed more than 150 mobility tests inside a 120-ton enclosure designed to mimic the surface of the Moon. These tests will further inform the final wheel design of all three sizes of the scalable CubeRover line.

Because CubeRovers are smaller than any rover that has operated on the lunar surface, only estimates from prior NASA missions with large rovers could inform initial engineering efforts. With eleven sets of wheels to test, the Astrobotic crew headed to NASA Kennedy Space Center’s (KSC) to conduct maneuverability and traction force testing on the lunar dust simulant.

“This is really a new frontier Astrobotic is exploring – we are pushing the understanding of small-scale mobility on the Moon. Larger rovers and smaller rovers interact differently with lunar regolith simulant,” says Troy Arbuckle, Planetary Mobility Lead Mechanical Engineer at Astrobotic. “The data we collected is invaluable. Two sets of wheels exceeded testing expectations, informing our path forward to continue maturing the CubeRover line.”

Astrobotic partnered with KSC under a $2M Tipping Point contract with NASA to conduct testing in KSC’s Granular Mechanics and Regolith Operations laboratory. The lab consists of a flour-like dust that compacts to a hard rock when compressed. Draw bar pull, slope, and point turn testing data collected from the CubeRover sensors and other hardware informed the performance of CubeRover wheels in an analogue lunar environment. Some wheel sets were capable of climbing 30-degree slopes while others successfully navigated and turned in deep regolith.

“The team at KSC has been extremely accommodating and knowledgeable. They got down and dirty moving around the lunar regolith to diversify our testing on CubeRover. We are all looking ahead for more opportunities to work together. We decided to drive the CubeRover alongside KSC’s RASSOR rover to simulate how RASSOR could dig a trench and CubeRover could drive in, collect samples, and drive back out,” says Astrobotic’s Troy Arbuckle.

Astrobotic will continue work optimizing the shape and size of CubeRover’s wheels. Additional testing will continue at Astrobotic headquarters in Pittsburgh to verify rover deployment methods, solar panel deployment, thermal vacuum survivability, launch survivability, and more. Efforts for CubeRover will culminate in a high-fidelity engineering unit, followed by a flight qualified product in 2022.

Robert PearlmanAstrobotic release
CubeRover Funded for Survive-the-Lunar-Night Mission

Astrobotic has been selected by NASA's Small Business Innovation Research (SBIR) Sequential Phase II program to develop, test, and fly lunar night survival and communication technologies onboard its CubeRover platform. The effort will culminate in a commercial flight to the Moon for CubeRover on an upcoming Astrobotic lander mission, where it will demonstrate the platform's ability to survive the harsh environment of lunar night and utilize satellite relays to traverse long distances.

Surviving the lunar night is no small feat. Temperatures can easily drop to – 200⁰C, which would typically disable thermally sensitive components like batteries and electronics and end a rover mission after just one lunar day of operation. To help address this challenge, Astrobotic has also been subcontracted by Advanced Cooling Technologies, Inc. (ACT) on a separate NASA Sequential SBIR for $1.8M to develop, integrate, and demonstrate lunar night thermal systems aboard lunar rovers and landers.

"This mission has the potential to usher in a new era of robust lunar robotics where instruments and payloads can survive months to even years on the Moon's surface," says Mike Provenzano, Astrobotic's Director of Lunar Surface Systems. "CubeRover will survive longer and drive farther than any lunar rover in its class with this flight, taking Astrobotic a major step forward in opening the Moon to sustained long-term robotic operations. In fact, we even have 1 kilogram of payload space still available on this mission for a payload team looking to take advantage of this capability."

To make full use of lunar night survivability and robust operations, rovers also need to be capable of driving long distances away from their host landers. This poses a significant communication challenge, where a rover's host lander may be over the horizon and unable to share a communication relay between Earth and the rover. To address this challenge, this mission will also demonstrate CubeRover's use of satellite communication relays, which will significantly extend its range.

"Some rovers are planned to rely on network protocols like Long Term Evolution, or LTE, (similar to how your cellphone transmits data) to transmit over long distances. However, these systems suffer from reduced line of sight visibility to their host lander and consequently cannot truly drive that far," says Cedric Corpa de Fuente, Lunar Surface Systems Lead Avionics Engineer. "We've known of this challenge since we started building rovers and it has been a major hurdle to overcome. Following this demonstration, our CubeRover product line's range of surface operations via satellite communications will be greatly extended."

This announcement comes on the heels of CubeRover's recently completed Critical Design Review with NASA's Space Technology Mission Directorate Tipping Point program. The team will now move to complete CubeRover's flight qualification campaign—a major step towards preparing for future missions.

Contact Us | The Source for Space History & Artifacts

Copyright 1999-2024 collectSPACE. All rights reserved.





advertisement