Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Websites
related space history websites

  collectSPACE: Messages
  Exploration: Asteroids, Moon and Mars
  NASA's Orion Exploration Mission-2 (EM-2)

Post New Topic  Post A Reply
profile | register | preferences | faq | search

next newest topic | next oldest topic
Author Topic:   NASA's Orion Exploration Mission-2 (EM-2)
Robert Pearlman
Editor

Posts: 38787
From: Houston, TX
Registered: Nov 1999

posted 12-02-2016 03:03 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
NASA's First Flight With Crew Will Mark Important Step on Journey to Mars

When astronauts are on their first test flight aboard NASA's Orion spacecraft, which will take them farther into the solar system than humanity has ever traveled before, their mission will be to confirm all of the spacecraft's systems operate as designed in the actual environment of deep space. After an Orion test campaign that includes ground tests, systems demonstrations on the International Space Station, and uncrewed space test flights, this first crewed test flight will mark a significant step forward on NASA's Journey to Mars.

This will be NASA's first mission with crew in a series of missions in the proving ground, an area of space around the moon where crew can build and test systems needed to prepare for the challenge of missions to Mars. The mission will launch from NASA's Kennedy Space Center in Florida as early as August 2021. Crew size will be determined closer to launch, but NASA plans to fly up to four astronauts in Orion for each human mission.

"Like every test flight, we will have test objectives for this mission both before and after we commit to going to the moon," said Bill Hill, deputy associated administrator, Exploration Systems Development, NASA Headquarters in Washington. "It's just like the Mercury, Gemini, and Apollo programs, which built up and demonstrated their capabilities over a series of missions. During this mission, we have a number of tests designed to demonstrate critical functions, including mission planning, system performance, crew interfaces, and navigation and guidance in deep space."

Leaving Earth

The mission plan for the flight is built around a profile called a multi-translunar injection (MTLI), or multiple departure burns, and includes a free return trajectory from the moon. Basically, the spacecraft will circle our planet twice while periodically firing its engines to build up enough speed to push it toward the moon before looping back to Earth.

After launch, the spacecraft and upper stage of the rocket will first orbit Earth twice to ensure its systems are working normally. Orion will reach a circular orbit at an altitude of 100 nautical miles and last 90 minutes. The move or burn to get the spacecraft into a specific orbit around a planet or other body in space is called orbital insertion.

Following the first orbit, the rocket's powerful exploration upper stage (EUS) and four RL-10 engines will perform an orbital raise, which will place Orion into a highly elliptical orbit around our planet. This is called the partial translunar injection. This second, larger orbit will take approximately 24 hours with Orion flying in an ellipse between 500 and 19,000 nautical miles above Earth. For perspective, the International Space Station orbits Earth from about 250 miles above.

Once the integrated vehicle completes these two orbits, the EUS will separate from Orion and any payloads selected and mounted inside the rocket's universal stage adapter will be released. The payloads will then fly on their own to conduct their unique missions.

After the EUS separation, the crew will do a unique test of Orion's critical systems. They will gather and evaluate engineering data from their day-long orbit before using Orion's service module to complete a second and final propulsion move called the translunar injection (TLI) burn. This second burn will put Orion on a path toward the moon, and will conclude the "multi-translunar injection" portion of the mission.

"Free" ride home

The TLI will send crew around the backside of the moon where they will ultimately create a figure eight before Orion returns to Earth. Instead of requiring propulsion on the return, the spacecraft will use the moon's gravitational pull like a slingshot to bring Orion home, which is the free return portion of the trajectory. Crew will fly thousands of miles beyond the moon, which is an average of 230,000 miles beyond the Earth.

A flexible mission length will allow NASA to gather valuable imagery data during daylight for the launch, landing and recovery phases. It will take a minimum of eight days to complete the mission, and pending additional analysis, it may be extended up to 21 days to complete additional flight test objectives.

Two missions, two different trajectories

The agency is scheduled to test SLS and Orion together for the first time without crew over the course of about three weeks in late 2018. The MTLI will build upon testing that will be done in a distant lunar retrograde orbit, or DRO, for that first mission. The DRO will put Orion in a more challenging trajectory, and will be an opportunity to test the kind of maneuvers and environments the spacecraft will see on future exploration missions. The DRO will require additional propulsion moves throughout the trip, including a moon flyby and return trajectory burns.

"Between the DRO on our first flight, and the MTLI on the second flight, we will demonstrate the full range of capabilities SLS and Orion need to operate in deep space," said Hill.

Once these first two test flights are completed, Hill added that NASA hopes to begin launching missions every year with crew, depending on budget and program performance.

NASA recently outlined its exploration objectives in deep space and grouped them into three categories: transportation, working in space, and staying healthy. The early missions in the proving ground are a critical step on the journey to learn more about the deep space environment and test the technologies the agency needs to eventually take humans to Mars.

Robert Pearlman
Editor

Posts: 38787
From: Houston, TX
Registered: Nov 1999

posted 08-09-2017 06:06 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA release
Orion Supplier Readies Shipment of Orion Astronauts' Windows on the Universe

When the first crew of astronauts fly aboard the Orion spacecraft, they will be able to look through a window and view the moon and Earth from their deep-space vantage point. The window panel that will provide that view is ready for shipment to NASA. AMRO Fabricating Corp., of South El Monte, California, has completed a section of the Orion pressure vessel, or underlying structure of the spacecraft that will send astronauts farther than humans have ever traveled before on Exploration Mission-2 (EM-2).

Above: The panel of Orion's underlying structure for Exploration Mission-2 containing the spacecraft's windows is manufactured by AMRO Fabricating Corp., in South El Monte, California.

Orion's four windows are contained in one of three cone panels that AMRO is manufacturing for NASA and Orion prime contractor, Lockheed Martin. The spacecraft's pressure vessel has seven structural elements, including the three cone panels. AMRO will ship the panel to NASA's Michoud Assembly Facility in New Orleans by the end of August, where it will be outfitted with strain gauges and wiring for monitoring purposes and joined together with other pieces of the pressure vessel scheduled to arrive at Michoud in the coming months.

"Many of our suppliers around the country are already starting to manufacture elements of the Orion for our first mission with astronauts," said Paul Marshall, assistant program manager for Orion. "Their work enables NASA's push to expand our boundaries into space and eventually our voyage to Mars."

The pressure vessel forms the sealed environment inside where astronauts will live and the structure upon which all the other elements of the spacecraft are built and integrated. The components of Orion's pressure vessel are joined using the friction-stir welding process, which bonds the pieces by transforming metals from a solid into a plastic-like state and then forging a bond between the two metal components. Once all pressure vessel elements are welded together, the spacecraft will be sent to Kennedy Space Center in Florida for outfitting, processing and launch.

Other than several small changes to allow for interfaces with crew equipment or mounting of hardware specific to EM-2, the overall structure, manufacturing process and mass of the pressure vessel is the same as it is for the structure that will fly on the first mission of Orion and SLS, now that engineers have optimized the design of Orion's structure. Engineers are making progress on the EM-1 spacecraft, currently being assembled at Kennedy ahead of its 2019 launch.

AMRO is a third generation, family owned, small business manufacturer that specializes in building metallic structures for spacecraft and launch vehicles. In addition to its work for Orion, AMRO makes elements of the Space Launch System core stage and provided components for the space shuttle. This past February, AMRO successfully graduated from the NASA Mentor-Protégé Program – a program through the Office of Small Business Programs which encourages NASA prime contractors to assist eligible protégés, thereby enhancing the protégés' capabilities to perform on NASA contracts and subcontracts.

"I speak for everyone in the NASA Office of Small Business Programs when I express how proud we are of the tremendous contributions the AMRO Fabricating Corporation is making to the NASA mission," said Glenn Delgado, associate administrator of the Office of Small Business Programs in Washington. "Their growth and achievements are a shining example of what can be accomplished by our protégés. We look forward to AMRO's continued success."

Exploration Mission-2 will be NASA's first mission with crew in a series of missions in the proving ground, an area of space around the moon where crew can build and test systems needed to prepare for the challenge of missions to Mars. The mission will launch from NASA's Kennedy Space Center in Florida in the early 2020s.

Robert Pearlman
Editor

Posts: 38787
From: Houston, TX
Registered: Nov 1999

posted 01-10-2018 06:51 PM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
NASA photo release
At the Michoud Assembly Facility in Louisiana, Lockheed Martin technicians complete the first weld on the pressure vessel for Orion which will carry humans to deep space on Exploration Mission-2.

Robert Pearlman
Editor

Posts: 38787
From: Houston, TX
Registered: Nov 1999

posted 02-01-2018 09:17 AM     Click Here to See the Profile for Robert Pearlman   Click Here to Email Robert Pearlman     Edit/Delete Message   Reply w/Quote
Lockheed Martin release
Construction Begins on First Orion Spaceship that will take Astronauts Beyond the Moon

Construction has officially begun on the spaceship that will achieve America's goal of returning astronauts to the Moon. Lockheed Martin technicians and engineers at the NASA Michoud Assembly Facility near New Orleans welded together the first two components of the Orion crew module capsule for Exploration Mission-2 (EM-2).

Orion is America's exploration spaceship, and the EM-2 mission will be its first flight with astronauts on board, taking them farther into the solar system than ever before. This flight, launched atop the Space Launch System (SLS) rocket, will usher in a new era of space exploration, laying the groundwork for NASA's lunar Deep Space Gateway, and ultimately for human missions to Mars.

"Orion has tremendous momentum. We're finishing assembly of the EM-1 Orion spacecraft in Florida, and simultaneously starting production on the first one that will carry crew," said Mike Hawes, Lockheed Martin vice president and program manager for Orion. "This is not only the most advanced spacecraft ever built, its production will be more efficient than any previous capsule. For example, look at the progress we've made on the EM-2 pressure vessel compared to the first one we built. The latest version is 30 percent lighter and has 80 percent fewer parts. That equates to a substantially more cost-effective and capable spacecraft."

Designed specifically to withstand the harsh and demanding environment of deep space travel while keeping the crew safe and productive, the main structure of the crew module, or pressure vessel, is comprised of seven large machined aluminum alloy pieces that are welded together to produce a strong, yet light-weight, air-tight capsule. The first weld joined the forward bulkhead with the tunnel section to create the top of the spacecraft.

The pressure vessel capsule will continue to be built out over the spring and summer in Michoud incorporating the three cone panels, the large barrel and the aft bulkhead. Once completed in September, it will be shipped to the Kennedy Space Center where the Lockheed Martin team will perform assembly and test of the EM-2 spacecraft.

"The EM-1 and EM-2 crew modules are very similar in design, but we've made a lot of improvements since we built EM-1, including processes, scheduling, and supply chain, all contributing to a lower cost and faster manufacturing," said Paul Anderson, director of Orion EM-2 production at Lockheed Martin.

But the historical importance of this Orion mission isn't lost to Anderson and his team. "Each of these spacecraft are important, but we realize that the EM-2 capsule is special as it's the first one to carry astronauts back out to the Moon, something we haven't done in a long time. It's something we think about every day."

All times are CT (US)

next newest topic | next oldest topic

Administrative Options: Close Topic | Archive/Move | Delete Topic
Post New Topic  Post A Reply
Hop to:

Contact Us | The Source for Space History & Artifacts

Copyright 2018 collectSPACE.com All rights reserved.


Ultimate Bulletin Board 5.47a





advertisement