
WADC TECHNICAL REPORT 59-505

PROJECT MERCURY CANDIDATE EVALUATION PROGRAM

Charles L. Wilson, Captain, USAF, MC Editor

Aerospace Medical Laboratory

WRIGHT AIR DEVELOPMENT CENTER

ASTIA

12

E780206665

. . .

N0

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Armed Services Technical Information Agency, (ASTIA), Arlington Hall Station, Arlington 12, Virginia.

Copies of WADC Technical Reports and Technical Notes should not be returned to the Wright Air Development Center unless return is required by security considerations, contractual obligations, or notice on a specific document.

WADC TECHNICAL REPORT 59-505

PROJECT MERCURY CANDIDATE EVALUATION PROGRAM

Charles L. Wilson, Captain, USAF, MC Editor

Aerospace Medical Laboratory

DECEMBER 1959

Project No. 7164 Task No. 71832

WRIGHT AIR DEVELOPMENT CENTER AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO

800 - March 1960 - 31-913

FOREWORD

This investigation was directed by Brig. Gen. Don Flickinger, USAF, MC, Command Surgeon, Air Research and Development Command. The testing, begun on 16 February 1959 and completed on 27 March 1959, was performed under Project No. 7164, "Physiology of Flight," Task No. 71332, "Physiological Criteria for Extended Environments." Col. J. P. Stapp, USAF, MC, Chief, Aerospace Medical Laboratory,* Wright Air Development Center, appointed the necessary staff to effect this investigation. The testing was conducted at the Aerospace Medical Laboratory of the Wright Air Development Center.

This project required the joint participation of many different professional groups before, during, and after the actual testing. Each individual in his selfless and energetic manner contributed significantly toward this undertaking.

The Aerospace Medical Laboratory staff experienced a warm association with all of the candidates. Despite the physical and mental fatigue engendered by the program, the candidates demonstrated inspiring competition and unfaltering equanimity. The staff wishes to express its deepest gratitude to them for their outstanding cooperation and understanding.

Special thanks go to the following personnel of the Aerospace Medical Laboratory: Capt. Edmund B. Weis, Jr., USAF, MC, who critically reviewed this entire manuscript; Miss Beverly A. Bruns, who prepared weekly reports and handled the immense amount of correspondence during and after the testing program; and Mrs. Heather R. Braman, who was responsible for the editing, typing, and layout of this entire report.

The Aero Medical Laboratory was redesignated Aerospace Medical Laboratory on 1 August 1959.

ABSTRACT

A battery of physiological, psychological, and biochemical tests was performed by the Aerospace Medical Laboratory on the candidates for the National Aeronautics and Space Administration's Project Mercury. These tests yielded new information on the physiological limitations of high transverse g, methods of recording anthropomorphic measurements, effects of noise and vibration on humans, body responses to heat stress, frequency of heart murmurs during heat stress, physiological and biochemical responses occurring during 1-hour MC-1 tests, physiological responses during vigorous exercise, and interpretation of psychological and psychiatric testing. Data on candidate performance are presented. The final candidate recommendation meeting is described. This report describes the methods which were used to correlate biomedical data statistically. A list of possibly significant correlations between various tests is included.

In the final candidate recommendation psychological attributes outweigh physiological attributes. Potentially fruitful areas for future experimentation are discussed.

ш

WADC TR 59-505

ADMINISTRATION AND LIAISON PERSONNEL

DON FLICKINGERandJACK BOLLERUDBrig. General, USAF, MCColonel, USAF, MCSpecial Assistant for BioastronauticsDirector of Life Sciences DivisionHq. Air Research and Development CommandWashington, D. C.

and

JOHN P. STAPP Colonel, USAF, MC Chief, Aerospace Medical Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio

and

STANLEY C. WHITE Lt. Colonel, USAF, MC NASA Space Task Group Langley Air Force Base, Virginia

JOHN D. HOWE and TRUMAN H. BALDWIN Brig. General, USAF Colonel, USAF Commander Director of Personnel and Base Services . Wright-Patterson Air Force Base, Ohio

1.72

and

WALTER B. SULLIVAN, JR. 1st Lieutenant, USAF Aerospace Medical Laboratory Wright Air Development Center Wright-Patterson Air Force Base, Ohio

WADC TR 59-505

i

CONTRIBUTORS

and

WILLIAM S. AUGERSON Captain, USA, MC NASA Space Task Group Langley Air Force Base, Virginia MISS THERESA A. FRICKE Data Processing University of Dayton Dayton, Ohio

 CHARLES BERRY
 and
 CLYDE KRATOCHVIL

 Major, USAF, MC
 Major, USAF, MC

 Department of Aviation Medicine
 Department of Physiology

 School of Aviation Medicine
 Randolph Air Force Base, Texas

and

C. WESLEY DUPERTUIS, M. D. Western Reserve University Cleveland, Ohio

A.4. 1.

ALL BAS BOALDALASS

1.

DAVID K. TRITES, Ph. D. WADC Personnel Laboratory Lackland Air Force Base, Texas

H. B. HALE, Ph. D. and BRYCE O. HARTMAN, Ph. D. Department of Physiology Department of Psychology School of Aviation Medicine

Randolph Air Force Base, Texas

WILLIAM O'CONNOR and Lieutenant jg., USN Department of Psychology USN School of Aviation Medicine Pensacola, Florida -

A. H. SCHWICHTENBERG Brig. General, USAF, MC (Ret.) Department of Aviation and Space Medicine Lovelace Foundation Albuquerque, New Mexico

and

G. DOUGLAS TALBOTT, M. D. Consultant Internist Dayton, Obio

THE AEROSPACE MEDICAL LABORATORY INVESTIGATING PANEL

WILLIAM R. TURNER Lt. Colonel, USAF, MC Chairman of the Candidate Evaluation Committee

CHARLES L. WILSON Captain, USAF, MC Candidate Evaluation Program Task Officer

ACCELERATION TESTS

Evan F. Lindberg, Captain, USAF, MC, Principal Investigator

Alvin S. Hyde, Captain, USAF, MC, Associate Investigator

Neil Cherniack, Captain, USAF, MC, Associate Investigator

Lawrence M. Berman, 1st Lieutenant, USAF, Biochemist

Mrs. Julia Pettitt, Biochemist

ANTHROPOLOGICAL MEASUREMENTS

Charles E. Clauser, Principal Investigator

Robert S. Ziegen, Captain, USAF, Associate Investigator

Kenneth W. Kennedy, Associate Investigator

BIOLOGICAL ACOUSTICAL TESTS

Donald J. Baker, Speech Intelligibility Investigator

Rolf R. Coermann, Ph. D., Physicist, Vibration Associate Investigator

Edward B. Magid, Captain, USAF, MC, Vibration Associate Investigator

PHYSICAL FITNESS TESTS

Charles L. Wilson, Captain, USAF, MC, Principal Investigator

Edmund B. Weis, Jr., Captain, USAF, MC, Associate Investigator

Joseph Young, SSgt, USAF, Assisting Investigator

THERMAL TESTS

Joseph Gold, Captain, USAF, MC Principal Investigator

> Johannes W. Polte Associate Investigator

WADC TR 59-505

vì

The Aerospace Medical Laboratory Investigating Panel (continued)

PSYCHOLOGICAL TESTS

George E. Ruff, Captain, USAF, MC Principal Investigator

Edwin Z. Levy, Captain, USAF, MC Associate Investigator

Victor H. Thaler, Captain, USAF Psychological Investigator

John K. Jackson, Captain, USAF Psychological Investigator

Mildred B. Mitchell, Ph. D. Psychological Investigator

Gilbert E. Johnson, 1st Lieutenant, USAF Psychological Investigator

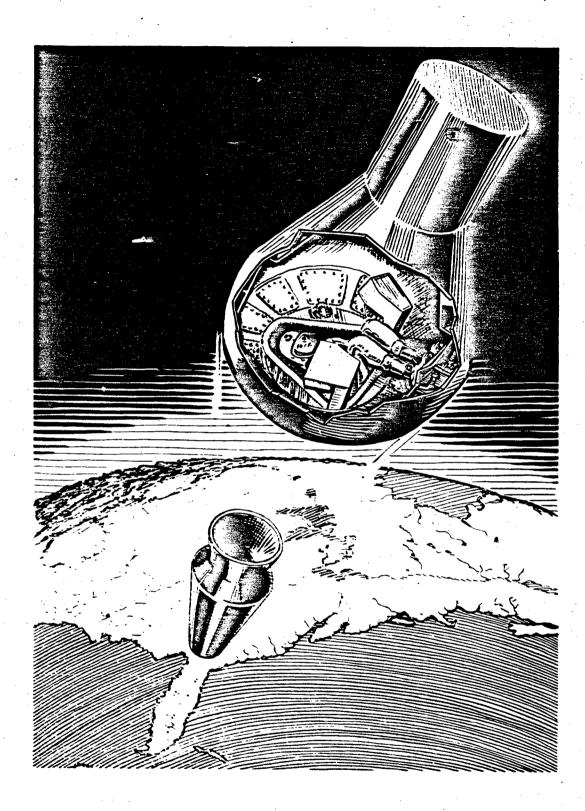

vii

TABLE OF CONTENTS

Chapter		Page
	Introduction	- 1
1 1	Candidate Arrival, Briefing, and Scheduling	7
Π	Acceleration Tests Part 1 Part 2. Urinary Output of 3-Methoxy-4-	11
	Hydroxymandelic Acid	16
III	Anthropometric Studies	19
IV	Biological Acoustical Tests Part 1. Intelligibility Measure Part 2. Effect of Noise on the Ability to	27
-	Perform Addition Part 3. The Influence of Vibration on Holding the Horizontal Position Utilizing the Equilibrium	31
	Chair	33
V	Heat Tests	41.
IV	Physical Fitness Tests	49
VII	Psychological Tests	81
VIII	The Candidate Evaluation Committee	[:] 87
IX	Data Processing Correlation Studies	93
X	Discussion and Recommendations	99
Appendix		
I	Medical Evaluations Performed at the Lovelace Foundation	101
ш	Modifications of Physical Fitness Tests	103
ш	Coding of Variables	107
IV	Table of Correlation Coefficients on 104 Variables	109
V	Comparison of Astronaut and Non-Astronaut Performance	131

WADC TR 59-505

ł

X

の法法

WAIX: TR 59-505

INTRODUCTION

C. L. Wilson, Capt., USAF, MC

The National Aeronautics and Space Administration (NASA), a U.S. Government civilian agency, has been assigned the task of exploring the feasibility of space travel. As a result of thorough and exhaustive study, NASA has concluded that certain aspects of space travel are feasible and, furthermore, that some will be practicable in the very near future. One profile of space travel envisions that a human pilot, transported in a life support system (capsule), could be thrust into orbit by a liquid fuel rocket, maintained there for several revolutions around the earth, and successfully and safely recovered from orbit. Project Mercury intends to realize this vision. Among the many strategic questions to be answered is: "Who will the pilot be?" This report describes how and why the Aerospace Medical Laboratory participated in the selection of the seven Mercury Astronauts.

HISTORY

The Human Factors Division of the Air Research and Development Command (ARDC) has been keenly aware of the need for clarification of the parameters of human endurance, safety, and comfort during periods of unusual stress. In 1952 Brig. Gen. Don Flickinger, USAF, MC, began directing biomedical research toward the development of tests to assist in selecting pilots for special research projects. Under his guidance Capt. T. F. McGuire, USAF, MC, of the Aerospace Medical Laboratory, employed a series of physiological, psychological, and biochemical tests which were incorporated into a stress-test program. Dr. McGuire's experience extended over a 4-year period, during which time he tested several special groups. These included USAF pilots and young volunteers from the University of Dayton. In his final months at the Aerospace Medical Laboratory he stress-tested 12 USN underwater demolition men (frogmen) kindly loaned by the Underwater Demolition Unit II, Little Creek, Virginia. The results of his research are presented in <u>Stress Tolerance Studies</u>, Part 1,^{0,1} and Tolerance to Physical Stress, Part II.^{0,2} Part III is being completed and will contain a supportive bibliography. Dr. McGuire rightfully should receive credit for his work in this field and development of early prototype crew selection profiles. Several new tests have been made available since then and are discussed later.

Captain F. J. Leary, USAF, MC, of the Aerospace Medical Laboratory also gained considerable experience in candidate evaluation. His research brought about modification of the cold pressor test to its present form. Previous testing utilized the immersion of one foot, then both feet. He also studied the reproducibility of physiological response on the same subject when tested on different days. He developed early scoring techniques based on physiological response. Modifications of his techniques were employed in the Mercury Candidate Evaluation Program.

Captain W. S. Augerson, USA, MC, was immensely valuable in the development of the final test profile. He assisted in a review of literature, experienced the actual tests, and offered valuable opinions on areas where improvement was indicated.

Two assistant investigators during the period of 1957 to 1958 were Gardner Edwards, M.D. (then a University of Virginia medical student on a USAF-sponsored scholarship), and Robert McAdam, associate professor of physical education, Northern Illinois University.

APPRGACH TO THE PROBLEM OF CANDIDATE EVALUATION

The ultimate purpose of any crew recommendation development program is to devise and validate tests which can be used with reliability in selecting crew members for future projects. The Project Mercury Candidate Evaluation Program was an important stage in this ARDC development program. Since the actual approach to this research problem departs from the ideal approach, it will help to present both the ideal and actual methods of attack.

Ideal Approach to Problem:

1. The candidates must be medically acceptable and technically capable before they will be considered as potential candidates.

2. Those who are tested must be the actual project candidates. A large candidate population will increase the reliability of the results.

3.- The test profile must simulate all aspects of the stresses anticipated during the actual project. The simulated stresses must be combined in the same relationship and intensity as they would occur during the project.

4. A battery of nonsimulating but relevant tests must be included in the testing program. These tests will be used to identify significant correlations between the response to simulating and nonsimulating tests. The ultimate goal is to replace simulating tests with the more easily administered, nonsimulating tests in future programs.

5. In the final recommendation of candidates, the investigators must only interpret subject performance on the simulating tests. Nonsimulating test performance will not affect recommendation of this first group of candidates.

6. All candidates, both recommended and not recommended, must enter the project.

7. At the completion of the project all of the participants must be graded on the effectiveness of their performances.

8. The investigators must then seek significant correlations between subject performances on the various simulating and nonsimulating tests and successful mission performances.

9. Those nonsimulating tests bearing significant correlation with successful mission performances may then be used to select future subjects from an identical population for identical projects. These future crew members will be highly reliable risks in successfully completing their missions. This is the goal of all endeavors at crew selection.

Actual Approach to Problem:

Inherent errors are frequently introduced when making a transition from an ideal to an applied test program due, for example, to time limitations, accelerated schedules, or unforeseen changes. The actual approach to the problem is stated below, preceded by an underlined restatement of the ideal approach:

1. The candidates must be medically acceptable and technically capable before they will be considered as potential candidates. The candidates were medically acceptable and technically capable. They met the following requirements: a. were pilots in the Department of Defense, b. had received engineering degrees, c. had successfully graduated from a military test pilot school, d. had achieved at least 1500 hours of total flying time, and e. exch man's height was 5'11" or less. One hundred and ten men met the above requirements. Sixty-nine of these men were invited to a

WADC TR 59-505

NASA briefing where the detailed plans of Project Mercury were revealed. The subjects were then asked if they desired to volunteer as competitive candidates. Fifty-five of them volunteered.

2. Those who are tested must be the actual project candidates. A large candidate population will increase the reliability of the results. Those who were tested actually were the Project Mercury candidates. The 55 men who were accepted were given a series of interviews and psychological tests. On the basis of the data thus obtained, 32 were chosen for the final phase of the selection program. The 32 candidates were sent to the Lovelace Foundation, Albuquerque, New Mexico, for extensive medical histories, physical examinations, and biochemical and physiological tests. A large random candidate population was not used. If the candidate population had been larger it would have been impossible to process them in time to meet the close time schedules of the project.

3. The test profile must simulate all aspects of the stresses anticipated during the actual project. It was impossible to devise a laboratory situation which exactly duplicated the stresses anticipated during Project Mercury. A rational alternative approach was to list the anticipated stresses and to use what laboratory tools were available.

Anticipated Stresses:

a. The men who were chosen could expect a 2- to 3-year period of intensive training including a study of space-frame structures, propulsion; inertial guidance, systems reliability, aerodynamics, and physiology. They would actively participate in training exercises such as: physical fitness, capsule parachute landings, ballistic trajectory flights, and underwater escape from capsules. These represent a prolonged period of genuine stresses.

The best practical laboratory tools to test these areas were: (1) review their past accomplishments, (2) extract personal histories, and (3) conduct psychiatric interviews and psychological tests. Additional information could be derived from observation of these candidates during moments of calibrated hazing such as: acceleration, pressure suit testing, immersing feet in ice water, and isolating the subject. The accumulated impressions of these trained observers should guarantee highly reliable maturity in those recommended.

b. Psychological and physical stresses will exist before, during, and after each flight. The psychological stresses will include fears and anxiety about possible accidents or death. Although well disguised in the mature test pilot, they will be present. The psychiatric evaluation should reveal those who are stable and reliable.

The physical stresses of blast-off and orbit will include acceleration, noise, vibration, weightlessness, tumbling if stabilization is not achieved, and possible capsule depressurization. Those insults of re-entry will contain deceleration, noise, vibration, and heat if the cooling system fails. Landing will be accompanied by deceleration. Before recovery there is the possibility that the capsule will sink. There is also the possibility of isolation in a remote and uninhabitable climate and topography.

The physical facilities available at the Aerospace Medical Laboratory are able to duplicate the important physical and psychological stresses mentioned above. These facilities include: human centrifuge, extremely low-pressure (high-altitude) chamber, heat-controlled test rooms, equilibrium-vibration chair, intense noise generator, aircraft (C-131B) specially modified to safely fly Keplerian trajectories (weightlessness), tumbling turntable, psychiatric interviewing rooms, and anechoic chamber.

Simulating Tests:

Those tests simulating stresses anticipated during Project Mercury are: transverse g profiles (acceleration tests) and vibration-equilibrium and intense noise profiles (biological acoustical tests). Weightlessness tests were not performed on the candidates for one main reason; it

* The tests performed at the Lovelace Foundation are detailed in the Appendix.

would have been impossible in scheduling always to meet the minimum flying safety requirements for each flight each day for 6 weeks. Tumbling tests are so unpleasant and the nausea so prolonged as to warrant its exclusion for the profile.

4. The simulated tests must be combined in the same relationship and intensity as they would occur during the project. The physical separation of test facilities rendered it highly impractical to improvise superimposed stress. While a multistress facility was desirable, it was not mandatory for study of the candidates. In any interpretation, partial data when expertly gathered is much more desirable than no data at all. This reasoning serves to defend the approach that was finally taken.

5. A battery of nonsimulating but relevant tests must be included in the testing program. These tests must be easy to administer and sale. A battery of easily administered and sale nonsimulating tests was incorporated into the program. They were (physical fitness tests): Harvard step, Flack, cold pressor, and tilt table. A battery of more complex nonsimulating tests was also devised. The investigators believed these might correlate significantly with simulating tests. The complex tests cannot be easily and/or safely administered. These tests are: positive g to blackout (acceleration); extensive anthropometric and photogrammetric measurements, somatotyping (anthropological); urinary catacholamines, plasma corticosteroids, urinary 3-methoxy-4-hydroxymandelic acid (biochemical); speech intelligibility (biological acoustical); 2 hours of heat stress (thermal); treadmill, MC-1 partial pressure suit (physical fitness); all tests administered(psychological); and maximum breathing capacity, bicycle ergometer, electrical stimulation of muscles (Lovelace Foundation).

6. In the final recommendation of candidates the investigators must only interpret subject performance on the simulating tests. Nonsimulating test performance will not affect recommendation of this first group of candidates. Some of these nonsimulating tests were interpreted and did affect the recommendation of candidates. This was intentional. The sum total of data gathered from all of the simulating tests, although valuable, was insufficient to render candidate recommendations with confidence. However, the investigators agreed that, if they were also allowed to interpret some of the nonsimulating tests with which they were intimately familiar, they could then attach great confidence to the final recommendations. It was unanimously agreed that each investigator-group would be allowed to interpret the nonsimulating tests which they chose. The main goal of this particular crew selection development program was to recommend outstanding candidates. An important but secondary goal was to discover the existence of significant correlations. It was unsound practice to omit data or impressions which might possibly affect the success of Project Mercury. Those nonsimulating tests which were interpreted and which did affect the final candidate recommendations were: positive g (acceleration); index of strain (thermal); Harvard step, Flack, cold pressor (only if feet were prematurely withdrawn), treadmill, MC-1 partial pressure suit (if subject terminated test for psychological reasons), tilt table (physical fitness tests); and all tests administered (psychological).

Those nonsimulating tests which were not used in the final candidate recommendations were: all measurements (anthropological); all measurements (biochemical); speech intelligibility (biological acoustical); and cold pressor test development of hypertension and/or tachycardia, MC-1 test development of presyncope or tachycardia > 160, Valsalva overshoot, and tilt table (physical fitness tests).

7. All candidates both recommended and not recommended must enter the project. All of the candidates did not enter the project. The final selection took into consideration all of the assets of the candidates. These assets included past training, experience, recommendations from the Lovelace Foundation, and recommendations from the Aerospace Medical Laboratory (AML).

8. At the completion of the project all of the participants must be graded on the effectiveness of their performances. The above condition has not been satisfied as this report nears completion. It will require several years to satisfy this condition.

 The investigators must then seek significant correlations between subject performances on the various simulating and nonsimulating tests and successful mission performances. Since condition

8. is not satisfied, this condition also cannot be satisfied. An alternative approach has been used. It has been assumed that the Mercury Astronauts are the best potential group to fulfill the mission of Project Mercury. It has also been assumed that they will carry out the mission successfully. There is confidence that these assumptions will mature into fact. Based upon these assumptions a significant correlation study has been sought. Ideally, it is premature. Practically, it is valuable, since the program has demonstrated tests that should be pursued in future crew recommendation studies.

Each chapter has been written by the appropriate principal investigator. Throughout this report the candidates will be referred to by alphabet letters assigned to their names. There is no relationship between these alphabetical designations and their names or NASA numbers. It is impossible for the reader to identify a particular subject's name or performance. This system was designed to maintain the privileged communication due each candidate.

REFERENCES

0.1. McGuire, T. F. Stress Tolerance Studies, Part I. Unpublished Data. 1958.

0.2. McGuire, T. F. Tolerance to Physical Stress, Part II. Unpublished Data. 1958.

CHAPTER I

CANDIDATE ARRIVAL, BRIEFING, AND SCHEDULING

The Project Mercury candidates completed their extensive examinations at the Lovelace Foundation early on a Saturday morning. Their complete records accompanied them as they departed via airlines for Dayton, Ohio.

They arrived in groups of five in Dayton at approximately midnight, reported to the airlines office, and asked for Lt. Col. Turner (their means of being identified). The administrative assistant escorted them to Wright-Patterson Air Force Base, where they were all billeted in a single house. They were advised that they would be briefed at 10:00 a.m. on Sunday morning.

The briefing was conducted by the laboratory coordinator, the administrative assistant, the task officer, another investigator from the Physical Fitness Test Unit, and an investigator from the Psychology Test Unit.

Details Discussed:

1. The tests which the candidates would receive had been devised for two purposes: first, interpretation of performance would assist in recommending those candidates who were outstanding in the tests; second, some of the tests had been included which would not be used in the candidate evaluation but which would be analyzed later to establish the presence or absence of significant correlations between interlaboratory tests. The candidates were urged to perform to the best of their ability and not to be discouraged if on any particular test they performed less well than they anticipated. It was pointed out that these tests are not easy to accomplish, and that a single poor performance very rarely carries a heavy penalty in the final scoring. They were reminded that the final selection of Mercury Astronauts would be made by NASA and that the AML's function was to render recommendations on all of the candidates. They were reassured that, although stressful, all of the tests are safe, and that each investigator had experienced his particular stress test several times to familiarize himself with the nature and severity of the stresses. The candidates were cautioned to report any illnesses so that proper medical attention could be provided and that test rescheduling would be accomplished when the subject was well.

2. The candidates were advised that none of the medical, psychological, or performance records would be included in their personal flight records unless they specifically requested that the records be included. The main purpose of the exclusion of Project Mercury records from the Department of Defense (DOD) pilot medical records was to guarantee that any episode of syncope (which might occur, for example, on the human centrifuge, the MC-1 test, or the tilt table test) would not be a threat to the pilot's flying status. They were solicited for recommended changes they believed might enhance the reliability of future programs. Finally, they were asked not to discuss the administration of or their performances on any test with the other candidates.

3. The task officer then briefed the candidates on what tests would be given. Lantern slides and a projector were used as an aid. The following slides were shown and very briefly discussed:

- a. Psychiatric interview
- b. Rorschach test
- c. Positive g profile
- d. Transverse g profile

e. Anthropometric studies

f. Heat test

g. Harvard step test

h. Flack and Valsalva overshoot test

i. Treadmill test

j. MC-1 partial pressure suit test

k. Tilt table test

1. Equilibrium chair test

m. High-energy sound test

n. Recommendation committee's meeting

The cold pressor test was not mentioned so that it would be a total surprise to all of the candidates.

4. The medical officers on the briefing committee then reviewed the medical records which had accompanied the candidates. When it was determined that the candidates were medically acceptable, each man was assigned an AML number from 1 to 5. Then the administrative assistant briefed them on their individual schedules (see figure 1.1). When all of the questions of the candidates had been answered, the briefing was adjourned.

3

SUNDAY	
--------	--

40.44	B-4-14	
10-11	Briefing	Î
12-2	Lunch	
2-6	Psych	

140000049		
MONDAY		

-		
TU	ESD	AX.

1.

	#1	#2	#3	#4	#5
8-9 9-10 10-11 11-12	Acc Anth Anth	Psych Psych Acc Free -LUNC		Psych Psych Psych Acc	PF
12:30	PF MC-1		Psych Iso	Acous	Psych CBS
7-9:30	PS			L TEST	TING

-	#1	#2	#3	44	45
_		**		77	#3
8-9 9-10 10-11 11-12	PF	PF .	Acc Anth Anth	Psych Psych Acc Free	Psych
		-LUNC	HEON-		<u>.</u>
12:30	Psych Iso	Psych CBS DINI	MC-1	Heat	Acous
4:30			EE	·, ·	

WEDNESDAY

THURSDAY

#3

#4

#5.

#2

#1

	#1 .	#2	#3	#4	#5
8-9	Psych	Psych	Psych	PF	PF
9-10		Acc			
10-11	Acc	Anth	Psych		
11-12		Anth			
		-LUNC	HEON-	<u>.</u>	
12:30	Heat	PF	Acous	Psych	Psych
		MC-1		CBS	Iso
		DINI	VER		
7-9:30	PSI			. TESI	TNG
1-0.00					

8-9 9-10 10-11 11-12	Psych Psych Psych Acc	PF	PF	Acc Anth	Psych Psych Acc Free
<u> </u>		-LUNC	HEON-		
12:30	Acous		Psych CBS		Heat
		—DINI	VER		مے برنی مس
4:30		FR	EE		

FRIDAY

	#1	#2	#3	#4	#5
8-9 9-10	PF	Psych	Psych Psych	PF	Psych Acc
10-11 11-1 2		Psych Acc	Free		Anth Anth
12:30	Psych CBS	-LUNC Acous		Psych Iso	PF MC-1
7-9:30	PS	— -DIN YCHOLA	NFR	L TEST	TING

Acc = Acceleration Anth = Anthropology Acous = Biological Acoustics Heat = Heat PF = Physical Fitness

SATURDAY

	#1	#2	#3	#4	#5
9-10:30 10:30		CHOL BRIE FI	OGICAL ING	TEST	TING

Psych = Psychology MC-1 = Partial Pressure Suit

Iso = Isolation CBS = Complex Behavioral Simulator

Figure 1.1. Weekly Schedule Chart

WADC TR 59-505

Ż

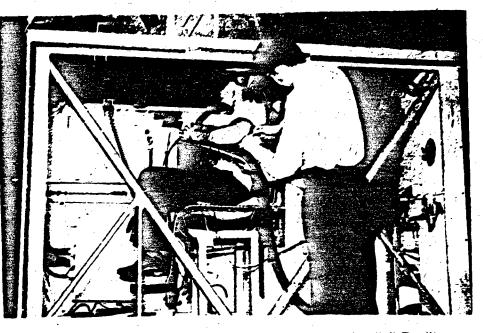


Figure 2.1. Centrifuge Test, Seated Position, Positive "g" Profile. Note Tube to Mouth for Vital Capacity. Goggles Shield against Windblast.

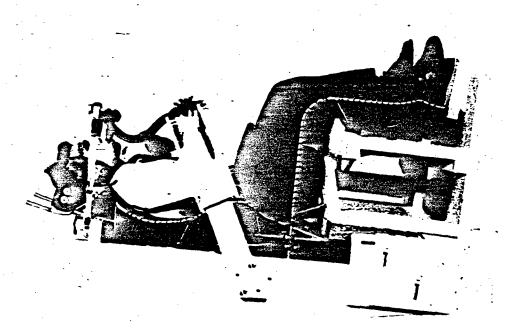


Figure 2.2. Centrifuge Test, 12° Angle with Respect to the Inertial Force Vectors, Positive "g" Profile

「「「「「「「」」」」」

WADC TR 59-505

CHAPTER II

ACCELERATION TESTS

PART 1.

E. L. Lindberg, Capt., USAF, MC

INTRODUCTION

During the initial planning of the testing program for the Project Mercury candidates, it was hoped that each subject's response to acceleration would be evaluated in terms of physiological tolerance. Until a few years ago, only headward accelerations (so-called positive acceleration) experienced by subjects in a seated position (figure 2.1) were of operational interest. The physiological alterations which determine a man's capability during positive g take place primarily in the cardiovascular system. 2.1, 2.2, 2.3 As headward acceleration increases, the cardiovascular system experiences difficulty in maintaining adequate blood flow to the eyes and brain, and the subject experiences visual blackout and finally unconsciousness. It would appear that physiological tolerance to this type of acceleration could be determined on the basis of the visual blackout level.

A recent study^{2.4} pointed out the variables which affect such a determination: the rate of onset of acceleration, the exact position of the subject in relation to the force vectors, the degree of relaxation achieved by the subject, the intensity and color of the light, and the psychological status of the subject at the moment of the stress. For purposes of tolerance determinations, two of these variables could not be standardized: the degree of subject relaxation and the psychological status of the subject. Even in the relaxed, experienced centringe rider the day-to-day variation in visual blackout level may be 0.5 g-units with gradual rates of onset, and purposely induced anxiety may raise this level by as much as 1.5 g's. Use of the subjective endpoint of visual blackout as an indication of the physiological limit, in the presence of uncontrolled variables, is unsound.

Added to these problems is the recent interest in man's ability to withstand much higher accelerations. Recent work^{2.5} has shown that a subject in a nylon-net, seat-restraint system, his trunk elevated to a 12° angle with respect to the inertial force vectors (figure 2.2), can be accelerated to 16.5 g's for short periods of time without serious impairment of vision or manual dexterity. In this case, with the subject facing the direction of acceleration, this is referred to as forward acceleration. Information regarding the response of Project Mercury candidates to this type of acceleration would certainly be desirable. In this position the physiological alterations take place, primarily, as a result of decreased respiratory function. As the acceleration is increased it becomes more difficult to expand the chest against the inertial force, and the viscera press against the diaphragm preventing movement, until finally effective respiration ceases altogether at 10 to 12 g's and hypoxia occurs. To measure the exact point at which respiration ceases requires special instrumentation which is not applicable to large groups of subjects in a short period of time. A distinct endpoint upon which to base an objective determination of physiological performance would be evaluated during both headward and forward acceleration.

METHOD

The Aerospace Medical Laboratory human centrifuge was used to produce the desired accelerations. The subject on the centrifuge was supported by a nylon-net seat which could be adjusted to the various positions discussed below. To evaluate the decrement in respiratory function during acceleration, the subject's vital capacity was measured at different levels of g. Large bore rubber tubing was used to connect the subject's mouthpiece to the collecting chamber of a respirometer

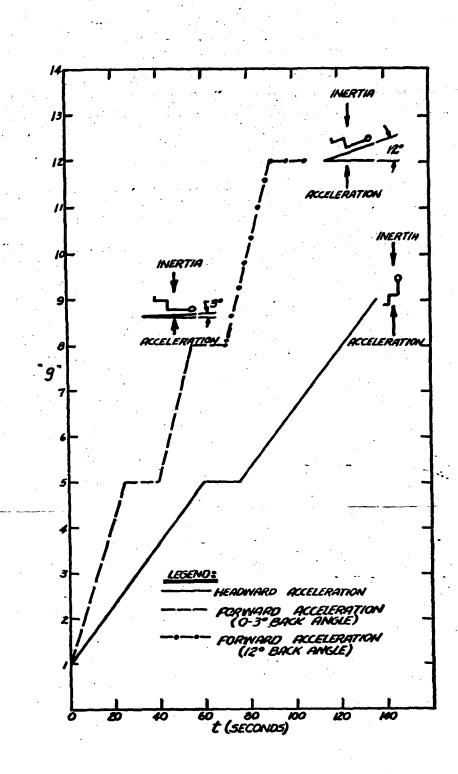
WADC TR 59-505

mounted in the centrifuge cab. A switching system, incorporated into this tubing, allowed the subject to divert his breathing from room air into the respirometer. On prearranged signals the subject inhaled as deeply as possible on room air, switched to the respirometer circuit, exhaled quickly and maximally, and then switched back to room air. Movement of the counterbalanced respirometer bell was recorded electrically and a direct write-out made through a Sanborn recorder. Volumes read from these records were accurate within 50 ml.

An electrocardiogram was continuously recorded while the subject was on the centrifuge. Heart rates were taken from these records; and all abnormalities in cardiac rhythm were recorded. One further evaluation of the cardiovascular system was made during headward acceleration. A level of visual blackout was determined with the subject instructed to use any method of straining, muscle tensing, and/or M-1 maneuvers to which he was accustomed as the acceleration was increased. This level was recorded when the subject failed to answer an intermittently triggered light which was at eye level in the subject's control field of vision. An arbitrary limit of 9 g's was felt to be necessary for this test, since the margin of difference between the levels of blackout and unconsciousness becomes small above 8 g's.

The acceleration profiles which were used are shown in figure 2.3. The subject experienced the headward acceleration profile on one day and the two forward acceleration profiles on another. The rate of onset for the headward acceleration was 1 g every 15 seconds to allow adequate time for compensatory cardiovascular reflexes to have effect. At the 5-g plateau the subject's vital capacity was recorded. Then, with the subject straining, tensing his muscles, and performing the M-1 manever, the acceleration was increased to the level of visual blackout. The rate of onset for both forward accelerations was 1 g every 5 seconds. For the first forward acceleration exposure the subject's back formed a 90° angle with the inertial force. The vital capacity was measured at the 5-g and 8-g plateaus. The second transverse profile had plateaus at 5 g's, 8 g's, and 12 g's for vital capacity measurements. The back angle was elevated 12° in the direction of the acceleration vector.

SCORING


The data obtained during acceleration was compared with that obtained during the prerun control period with the subject in the centrifuge cab in each of the respective positions. As a basis of comparison of one subject with another, the changes in vital capacity at the different levels of acceleration were expressed as percents of the control value. The absolute levels of blackout and the heart rate at 5 g's during headward acceleration were also compared.

Each of eight separate physiological responses was compared with the mean response for the entire group. The blackout level was weighted twice in scoring. If the performance value was greater than 1 σ above the mean, the subject was given 1 point. If the value fell within 1 σ of the group mean, a half point was given. If any value was less than 1 σ below the mean, no points were given. A sample of one group's scoring is shown in table 2.1.

RESULTS

The average change in vital capacity at the different levels of acceleration and for different positions is shown in tables 2.2 and 2.3. The experienced members of the Wright Air Development Center centrifuge panel were exposed to the same acceleration profiles as the Project Mercury candidates to afford a baseline for comparison of the results. It has been shown that the average tidal volume during normal respiration represents 10% to 15% of the vital capacity. The average subject's vital capacity at 8 g's was 12% to 15% of his control vital capacity, which means that his maximum breathing effort at 8 g's is quantitatively equal to his normal tidal volume. Contrary to the subjective

WADC TR 59-505

WADC TR 59-505

TABLE 2.1

	Black	rul	Pulse	Rate	Pe	rcent of	Cont	rol V	filal	Capa	city Remaining						
Subject.	Lev	et _		Position	Positive	Position	Su	pine	Pris	ition				e Pr	sition		Total Score
	B* 9			5 1	5	<u>s</u>	5	g 2	8	6 3_}	5	gʻ .s	8	g's	12	53	0 to 9
	**		¥		¥		⊢ .≭	S			· · · · · · · · · · · · · · · · · · ·	S	<u>v</u>	_>_	<u> </u>		
EE	7.5	1	200	0	59	1/2	49	1/2	16	1	49	1	15	1/2	4	1/2	5.0
	7.0	0	190	0	54	. 1/2	44	1/2	2	0	40	1/2	2	0	6	1/2	2.0
BB	7.5	1	135	1.	25	0	44	1/2	2	0	29	0	2	0	1	0	2.5
ĸ	8.9	2	150	1	57	1/2	53	1/2	13	1/2	51	1	21	1	0	0	6.5
L	7.1	0	150	1	55	1/2	43	0	5	0	33	0	0	0	5	1/2	2.0
D	7.6	1	200	0	68	· 1	57	1	21	. 1	56	1	19	1	8	1	7.0
Mean	7.6		170		53		49		10		43		10		4	_	
S . D.	0.3		18		7		5		4		4		5		3		1 - 1

RESULTS FROM ONE GROUP OF NASA PROJECT MERCURY CANDIDATES (Scoring Points Are Shown)

Actual Value •• Scoring Points

TABLE 2.2

PERCENT OF CONTROL VITAL CAPACITY MEASURED DURING ACCELERATION (31 NASA Subjects)

Position	5 g's		8 g*s		12 g's		
	Average	Range	Average	Range	Average	Range	
Positive	55%	25 2-69 7					
Supine (0° - 3° Back Angle)	45%	267-87 7	134	07-397			
Semisupine (12° Back Angle)	43 %	18 6-63 6	15%	0 7 -397	56	07-197	

TABLE 2.3

PERCENT OF CONTROL VITAL CAPACITY MEASURED DURING ACCELERATION (Centrifuge Panel Members)

Position	5 g's		à g's		12 g's	
	Average	Range	Average	Range	Average	Range
Positive	48%	213-693				
Supine (0° - 3° Back Angle)	38%	27%-45%	123	G Z-35 Z		
Semisupine (12° Back Angle)	39%	273-526	12%	39-37%	14	02-63

impressions recorded in the past, the 12° increase in back angle was not sufficient to improve respiratory function in either group. At 12 g's the average maximal breathing effort is equivalent to one half of the normal tidal volume. In the future an evaluation of the diffusion ratios of oxygen at the alveolar level will lend more importance to these figures.

Although the mean values of the Project Mercury candidates were higher than those of the centrifuge panel, the differences were not statistically significant and the range of values was much the same.

The mean visual blackout level of the NASA candidates was 7.0 g's with values ranging from 5.2 g's to the arbitrary upper limit of 9 g's. As a rule, better performance was obtained from those pilots who were more familiar with the muscle tensing and M-1 procedures for anti-g protection.

The average heart rate for the NASA candidates at 5 g's during headward acceleration was 160 beats per minute with values ranging from 90 to 200 beats per minute. There was no significant correlation between heart rate at 5 g's, or the percent change in heart rate from control levels, with the blackout level. One of the subjects who reached the 9-g level before blackout had a heart rate of 200 from the time he reached 5 g's until the test was termined at 9 g's. Another subject who had a heart rate of 200 at 5 g's was blacked out at 6.2 g's. It was concluded that the pulse rate was not an accurate index of the effectiveness of the circulatory system, but it is generally thought that a heart these higher heart rates has not been quantitated, no explanation is offered for the subject with a heart rate of 200 and a 9-g blackout level.

Extrasystoles were recorded during one of the profiles in 6 of the 31 subjects. None of them showed any abnormalities during more than one profile. One of these six subjects had an interpolated extrasystole after every third normal beat for a 20-second interval at 10 to 12 g's during forward acceleration. The other subjects had only occasional extrasystoles during acceleration. There were no subjective symptoms attributed to these findings, and, immediately following the acceleration, no abnormalities were demonstrated. Extrasystoles are frequently recorded on members of the centrifuge panel who repeatedly undergo acceleration.

SUMMARY

A method has been described by which a group of subjects was evaluated in terms of physiological response and performance during headward and forward acceleration. The decrement in respiratory function was determined during both types of acceleration by measuring the vital capacity. During headward acceleration the cardiovascular system's response was determined by recording the level of visual blackout. Further information regarding the cardiovascular system was obtained from the electrocardiograms recorded during the tests. To determine if the subject's lack of familiarity with acceleration, as experienced on the centrifuge, would affect the results, the same tests were performed on a panel of experienced centrifuge riders. The difference in results was not statistically significant.

Each subject's performance was compared with the mean values for the entire group, and a scoring system was designed to divide the subjects into average, above average, and below average groups. A further subdivision into an order of precedence, based on the data from these brieftests, was not felt to be warranted. It was intended that any serious physiological handicap or defect would be demonstrated during the selected profiles.

WADC TR 59-505

PART 2. URINARY OUTPUT OF 3-METHOXY-4-HYDROXYMANDELIC ACID

M. L. Berman, 1st Lieutenant, USAF Julia Pettitt

INTRODUCTION

In order to confirm the recent finding that 3-methoxy-4-hydroxymandelic acid, a major urinary catabolite of both adrenaline and noradrenaline, 2.6, 2.7 is correlated with the stress of acceleration, 2.8 estimation of this catabolite was made from urine collected from six of the NASA candidates. Urine samples were collected 1 and 3 hours after the following stress situations: forward acceleration, isolation, heat, simulated altitude at 65,000 feet in an MC-1 partial pressure suit, and 1 hour after the candidates were given 4 hours of psychological tests. Because there was not time in the candidate's schedule to obtain urine samples during a 3- to 4-hour period when candidates were not undergoing a test, the control level was determined from urine collected 3 hours after isolation during which time candidates were probably in the most relaxed condition. This control period occurred late in the afternoon for all candidates tested. Only those candidates whose schedule showed a 3-hour interval between each stress situation were selected for this experiment.

RESULTS

The results showed that the output of this catabolite was significantly above the control level (probability of chance occurrence less than 0.01) 1 hour after forward acceleration, exposure to simulated altitude of 65,000 feet, isolation, and the psychological test period. No significant change was observed after heat stress. The low excretion values found during this control period may be the to diurnal variation and/or exhaustion of the catacholamine catabolite following the isolation period. Current investigations will test the validity of the assumption that the 3-hour, late-afternoon period after isolation is a true control period. Therefore, the data collected on the urinary cutput of the catabolite for the Project Mercury candidates will be reported at a later date.

16

REFERENCES

- Code, C. F., E. H. Wood, et al. "The Sequency of Physiological Events in Man during Exposure to Positive Acceleration." Fed. Proc. 4: 14. 1945.
- 2.2. Maciolek, J. A. Circulatory Reflex Activity as a G-Protective Device. WCRD TN 55-1. Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. January 1955.
- 2.3. Zarriello, J. J., L. M. Seale, and M. E. Norsworthy. The Relationship between Cardiovascular Response and Positive G Tolerance. Project NM 11 01 11, Report No. 11. USN School of Aviation Medicine, Pensacola, Florida. 1958.
- 2.4. White, William J. Acceleration and Vision. WADC TR 58-333. Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. November 1958.
- 2.5. Clarke, N. P., A. S. Hyde, et al. A Preliminary Report of Human Response to Rearward Facing Re-Entry Accelerations. WADC TN 59-109. Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. July 1959.
- Armstrong, M. D., A. McMillan, and K. N. F. Shaw. "3-Methoxy-4-Hydroxy-D-Mandelic Acid, A Urinary Metabolite of Norepimephrine." <u>Biochem. Biophys. Acta</u>. 25: 422-423. 1957.
- 2.7. Axelrod, J., S. Senoh, and B. Witkop. "O-Methylation of Catecholamines in vivo." J. Biol. Chem. 233: 697-701. September 1958.
- 2.8. Berman, M. L. "A Preliminary Report on Quantitative Estimation of Urinary Metabolite of Adrenaline and Noradrenaline as a Possible Indication of Tolerance to Gravitational Stress." J. Aerospace Medicine. (Submitted for Publication)

WADC TR 59-505

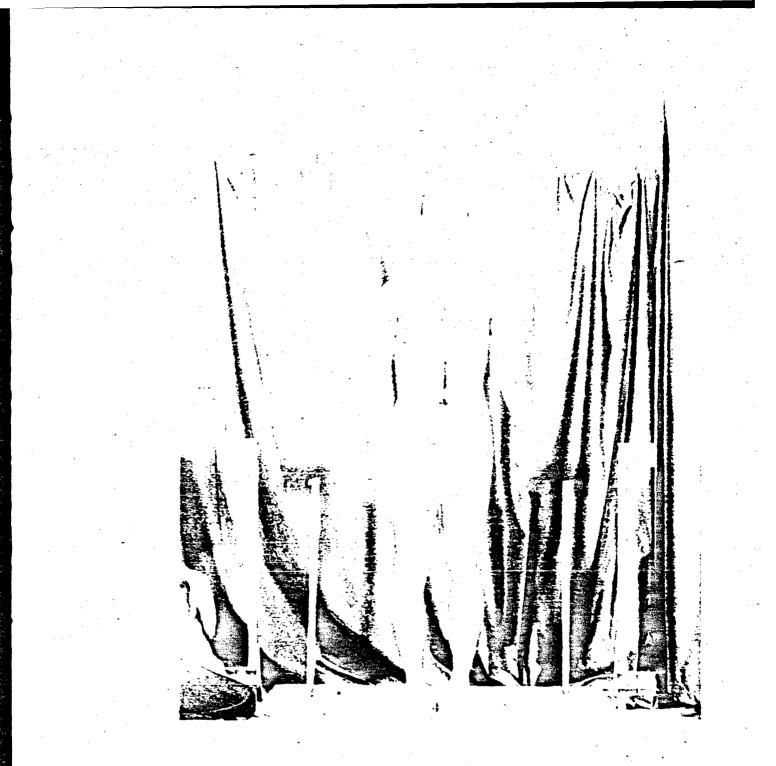


Figure 3-1. Sonatotype Photograph

WADC TR 59-505

13

.

CHAPTER III

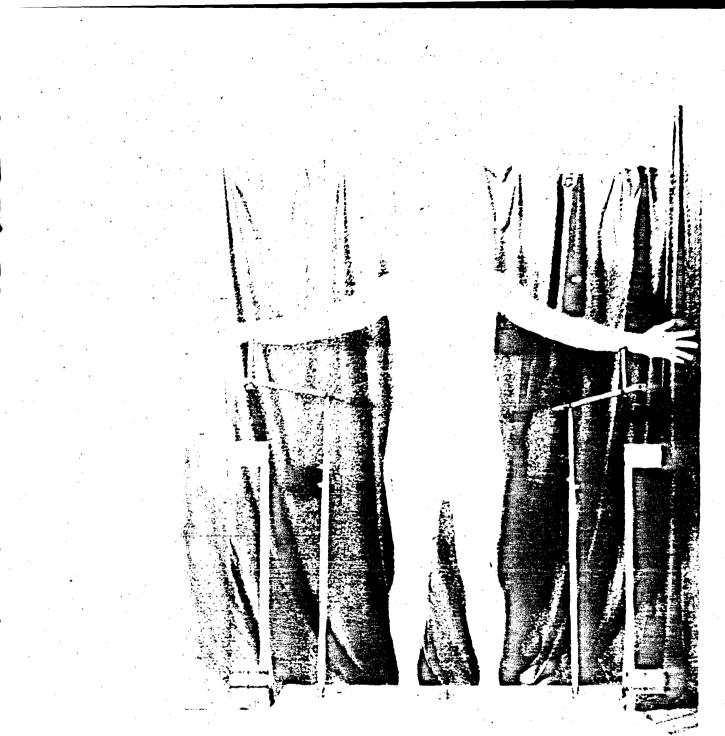
ANTHROPOMETRIC STUDIES*

C. E. Clauser

Method

The responsibility of the anthropometric investigators to the candidate evaluation program was to provide a detailed anthronometric record of each subject. This record was to be in three parts: 58 directly measured dimensions, a series of 3 standard somatotype photographs---pictures of subjects posed in a specific, standardized manner from which numerical assessments of physique are made (see figure 3.1), and a series of 4 stereophotographs (see figure 3.2). The 58 dimensions were taken to provide a metrical and proportional description of the subjects, including a calculation of lean-body weight. They were also to be used to establish workspace and clearance dimensions to assist engineers designing the Mercury capsule and equipment and to provide fitting information, if needed, for articles of personal equipment. The series of three somatotype photographs (front, left side, and rear) were taken to allow an assessment of body typology. Four pairs (right-side, leftside, front, and back views) of stereophotographs were taken of each subject. These photographs form a record of the subject from which extensive data can be extracted. Figure 3.2 is a print of. one of a pair of stereophotographs. The stippling on the body furnishes sufficient surface contrast for the plotting of contour maps. The lines drawn on the body enable the contourer to join the four views of the body, and the circled crosses at various points record the level of direct circumferential measurements. Figures 3.3 and 3.4 are left-side and back contour maps of a subject. From such contour maps, cross-sectional diameters, circumferences, and areas can be determined at any level, the surface area of the total body or almost any particular part can be established, and the volume of the body or its segments can be assessed. In addition, body arcs, contours, and any desired linear dimensions can be measured. An error of 1% or less of such information derived from contour maps of the body plotted from stereophotographs has been demonstrated.3.1

Lean-body weight was determined using four direct dimensions — stature, lateral chest diameter, bitrochanteric diameter, and lateral wrist diameter following a technique developed by Capt. A. R. Behnke, Jr., USN, MC.^{3.2} Purported lean-body weight is the actual body weight minus the fat content with the exception of the "essential" lipids.^{3.3} Thus, lean-body weight reveals the amount of "excess fat" of the body. Lean-body mass** was independently assessed on each subject by the Lovelace Foundation, through a contract with the Atomic Energy Commision of Los Alamos, New Mexico, by a sophisticated radioactive K⁴⁰ method.^{3.3} A comparison of the data obtained by the 2 methods has been made on 21 of the subjects. (Lean-body mass on the other subjects is not available to the Aerospace Medical Laboratory at the time of publication of this report.)


The determination of the body physique or somatotype *** follows that described by Sheldon^{3.4} This system uses a scale of 1 to 7. Numerical ratings are made from an evaluation of photographs, showing the degree to which the body exhibits three primary components: endomorphy (softness, roundness), mesomorphy (solidity, muscularity), and ectomorphy (linearity, delicacy). The resulting

 The author of this chapter wishes to thank Mr. H.T.E. Hertzberg, Chief of the Anthropology Section, Biophysics Branch, of the Aerospace Medical Laboratory, for his critical review of this chapter and his many helpful suggestions.

• For practical purposes, lean-body mass is equivalent to lean-body weight.

*** All somatotypes were made by Dr. C.W. Pupertuis of the School of Medicine of Western Reserve University.

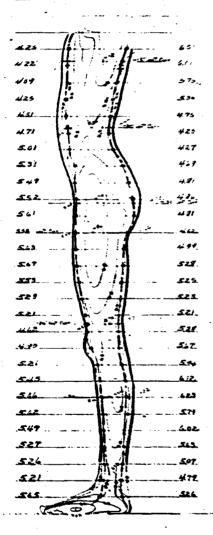
WADC TR 59-505

the services of Salary, "Preparents in Stephen Programmy

•

numerical expression denotes the somatotype of the individual in degrees of endomorphy, mesomorphy, and ectomorphy, respectively. For example, the somatotype 361 indicates a body type that has a moderate degree of endomorphy, is predominately mesomorphic, and has a minimum of ectomorphy.

RESULTS


The determination of lean-body weight from anthropometric data has proved to be most interesting and of significant potential use. In general, the agreement between lean-body weight as estimated anthropometrically and the lean-body mass as estimated by K⁴⁰ is remarkably good. A comparison of the differences of the percent of "excess" fat as determined by these 2 techniques for the 21 subjects. for which comparative data are available, showed a mean difference of 2.9%. Eleven subjects were within 0.4% to 2%, 6 subjects were within 2.4% to 4.6%, and the remaining 4 varied from 5.3% to 10.6%. Several reasons are possible to explain the larger differences. There could be an error in measuring or recording. Minor variations in the chest, wrist, bitrochanteric, and stature dimensions may significantly affect the final results. Therefore, in the future, all subjects that are to be examined as part of the continuing candidate evaluation study will be measured more than once for these dimensions and the average measurements will be used. (Remaining significant differences between the two methods should be investigated in order to see whether or not a better equation can be derived.) This portion of the study suggests that a new tool may become available for the Flight Surgeon to use routinely in assessing the conditions of his personnel.

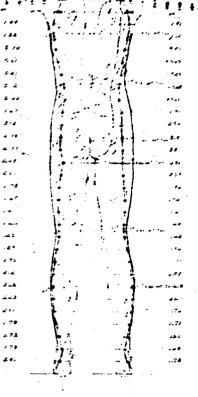

From the analysis of body type data, the main features noted were the general uniformity of body types represented in this Project Mercury sample. All 31 showed above average development of mesomorphy or general muscular development, and the 7 selected Astronauts had still a slightly higher average for the mesomorphic component. Table 3.1 shows the means for the 3 components for a sample of 3935 Air Force flying personnel, the 31 Mercury candidates, and the 7 Astronauts.

Figure 3.3 (right). Left-Side View Contour Map

WADC TR 59-505

B

Figure 3.4. Back View Contour Map

TABLE 3.1

• .

MEAN SOMATOTYPE COMPONENTS OF AIR FORCE FLYING PERSONNEL, MERCURY CANDIDATES, AND ASTRONAUTS

	Endomorphy	Mesomorphy	Ectomorphy
Air Force Flying Personnel ^{3.5}	3.47	4.51	2.95
Mercury Candidates	3.57	4.86	2.32
Astronauts	3.71	5.00	2.21

WADC TR 59-505

ATA ITAN

DISCUSSION

The anthropometric investigators did not attempt to rank or rate the Mercury candidates in any fashion. At present the correlation between anthropometric data and an individual's potential ability to perform a specific task is too low to justify a conclusion that one subject has a greater chance than another to carry out a given mission successfully. Several past investigations into the relationships between physique and success in military flying have had contradictory results. Some investigators reported that successful civil and military flyers were significantly taller and heavier, with above average development of muscularity, than the general population or a college population.^{3.6} However, Army Air Force staff psychologists attempted to validate performance against anthropological and psychological data which were supposed to predict success in military flying. They found no association between anthropological data and success in military flying or primary flight training achievements.^{3,6} Damon anthropometrically and anthroposcopically (visual inspection) measured and somatotyped 3193 flyers, 425 college students, and 57 Army Air Force soldiers. He was attempting to determine whether significant or meaningful association between anthropometric and morphological data and success in military flying could be established. In this instance, success in military flying was based on airmen with superior combat records in World War II. This study revealed from moderate to low, but statistically significant, correlations between success in military flying and chest circumference, chest circumference and stature index, head circumference and chest circumference index, and gynandrom or phy (the degree to which males exhibit bodily characteristics ordinarily associated with females). This study is interesting and significant in the search for the confirmation or refutation of the thesis that success in flying can be predicted on the basis of body form and proportions. However, the factors involved in ability to perform military flying successfully are too complex to predict the superiority of one subject over another from a small group of highly proven flyers on the basis of physique. It has not yet been established if the qualities that make up a superior combat flyer are those desirable for pilots of advanced research vehicles.

The preliminary correlation study (see Appendix IV) may suggest areas of concentrated investigation. It should be emphasized that the data are insufficient as a basis for significant generalization. When the sample size of the candidate evaluation program is large enough, all items of anthropological information can be assessed against data accumulated by the participating disciplines, and promising leads revealed can be subjected to further study. Of particular interest will be an analysis of the type of data that can only be obtained from the stereophotographs.

A comparison of the somatotypes of Air Force flying personnel, Mercury candidates, and Astronauts is interesting, but no conclusions can be drawn (see table 3.1). There is an apparent increase in the mean endomorphic and mesomorphic components and a decrease in the ectomorphic component of the groups in the following order: Air Force flying personnel, Mercury candidates, selected Astronauts. A possible explanation for increased endomorphy could lie in the fact that, while the Mercury candidates are older than the general Air Force flying population, the Astronauts are older than the mean Mercury candidate population. Also, since the Mercury candidates were limited to those 71 inches or less in stature, their mean ectomorphic rating could be expected to be lower than that of the Air Force flying population. A comparison of the mean heights, weights, and ages of the Air Force flying population, the Mercury candidates, and the Astronauts is presented in table 3.2. It is interesting, but not statistically significant, that the mean stature of the Mercury sample is less than that of the Astronauts. The smaller men did not fare so well in this sample as medium-to-large men.

When the first man is orbited into space, many problems similar to those encountered in preparing man to fly conventional vehicles must be solved. The man and the machine will have to be an integrated man-machine complex. The man must fit comfortably into the capsule and be able to operate efficiently all necessary controls. In order to insure the most efficient design of the mancontaining capsule, an adequate description of the pilot's body size and workspace envelope is necessary. Such data were obtained during the examination of the Mercury candidates and have been useful to the engineers designing the Mercury capsule.

WADC TR 59-505

TABLE 3.2

MEAN HEIGHTS, WEIGHTS, AND AGES

	Height		Weight		Age	
	Mean	Range	Mean	Range	Mean	Range
Air Force Flying Personnel ^{3.7}	69.1	59.5-77.6	163.7	104-265	27.9	18-54
Mercury Candidates	68.7	65.7-71.0	162.6	138-190	32.8	27-38
Astronauts	69.1	66.3-70.4	166.5	154-190	34.7	32-38

OF AIR FORCE FLYING PERSONNEL, MERCURY CANDIDATES, AND ASTRONAUTS

Much valuable information should be extracted from the body contour maps drawn from the stereophotographs. It would be of considerable interest, for example, to correlate total body surface area of the subjects with their heat tolerances, and the cross-sectional form of the thoracic cavity with g-tolerances, vibration studies, and altitude chamber tests. From contour maps of the Astronauts, furthermore, fabricators of protective garments could make a suit that would fit as a second skin.

The collection of the metrical data and photographic records of the subjects has been significant. These data enable interested personnel to handle individual equipment and workspace problems, foreseen or unforeseen, without requiring the presence of the subject (assuming no significant change in weight).

SUMMARY AND CONCLUSIONS

A sophisticated anthropometric record of each Project Mercury candidate has been obtained. Some of these data have already been applied toward the design of the life-support capsule and the Astronaut personnel equipment. Estimates of the lean-body weight by the Behnke formula agree very well, in general, with independent estimates of the same factor by the radioactive K⁴⁰ method. No attempt was made to rank or rate these men in terms of anthropological measures. The function has been to describe the sample. It could assign such rating only after careful studies of the correlations between anthropological measures and the various aspects of each person's performance.

This body of data is unique. There has been no other study in which such a diverse mass of clinical, physiological, psychological, and anthropological data has been collected on the same sample. The present data, with future extensions, may provide the basis for a long-term study of the interrelationships of these disciplines. Although studies of present data are underway in a limited fashion, they can become more meaningful when a larger sampling is available. At that time, an illuminating contribution to the relationship of man's physical constitution and physiological performance must result.

WADC TR 59-505

PEFERENC23

- 3.1. Hertzberg, H.T.E., C.W. Dupertuis, and I. Emannel. Sicrephologrammetry as ian Anthropometric Tool. WADC TR 58-67. Wright Air Development Center, Wright Patterson Air Porce Base, Obio. 1958.
- Behnke, A.R., and W.E. Stri. The Estimation of Lean Body Weight from Anthropometric and X-Ray Measurements. Research and Development TR USHRDL-TR-203, NS 080-001. U.S. Naval Padiological Defense Laboratory, San Francisco 24, California. 1957.
- Behnke, A.R. Military Aspects of Underweight and Overweight. Research and Development Report USNRUL-TR-205, NS 080-601. U. S. Naval Radiological Defense Laboratory, San Francisco 24, California. 1957.
- 3.4. Sheldon, W.H., S.S. Stevens, and W.B. Tucker. The Varieties of Human Physique. Harper, New York. 1940.
- Dupertuis, C.W., and I. Emanuel. A Statistical Comparison of the Hody Typing Methods of Hooton and Sheklon. WADC TR 56-365. Wright Air Development Conter, Wright-Patterson Air Force Base, Ohio. 1956.
- 3.6. Damon, Albert. "Physique and Success in Military Flying." Am. J. Physical Anthropology. 13: 217-252, 1955.
- Hertzberg, H.T.E., G.S. Daniels, and E. Churchill. Anthropometry of Flying Personnel - 1950. WADC TR 52-321. Wright Air Development Center, Wright-Patterson Air Force Base, Chio. 1954.

25

CHAPTER IV

BIOLOGICAL ACOUSTICAL TESTS

PART 1. INTELLIGIBILITY MEASURE

D. J. Baker R. G. Hansen, Capt., USAF, MC

BACKGROUND DATA

The standard method of specifying a communication system in a point-to-point transmission network is to examine the various components that make up the system. Commonly, there are four major categories or components:

- 1. The speaker
- 2. The listener
- 3. The electronic system

4. The environment in which the first three operate

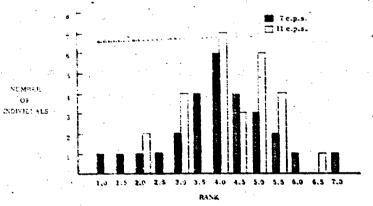
The demand of continuous investigations in the area of intelligibility measurement can be well documented by the increasing demands placed on the components of this system. These new demands can best be categorized into factors that have a tendency to reduce the probability of message reception, including:

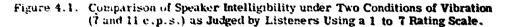
- 1. Unusual environments, especially higher noise levels than before anticipated
- 2. Distance requirements associated with such problems as atmospheric radio interference
- 3. Additional stress on the human operator

In situations where there are requirements for verbal transmission of information, the best components available are desirable. This is especially true of the human operator in present and future operational aircraft. The increased speed of the manned vehicle places a premium on adequate intelligibility.

PROCEDURE

The present study was initiated to determine the relative intelligibility of a panel of experienced pilots and to make recommendations as to the ratings of these individuals and their relative ranks. The basic method was a standardized procedure to estimate relative intelligibility of speakers, listeners, and/or systems. This is essentially the use of standard wordlists representative of everyday language and balanced in frequency of occurrence of sounds to negate the effect of learning a particular set of words. For this study the Harvard PB (phonetically balanced) wordlists were chosen. There are four basic lists and each list may be presented at random. The plan called for each individual to speak each of 50 words comprising a particular wordlist. The carrier phrase "The word is..." was used as a means of maintaining a constant intensity level at the tape recorder. The resulting recordings were played to a panel of trained listeners, the number of listeners varying


WADC TR 59-505


from $d \to H$ studies the orderics of panel hatering. The instructions given to the listeners were to while dependent words they ward. A to dispeach-to-noise (s/s) ratio was selected for the presentation of the stimulus materials with the average level of speech presented at 60 db, a reference sound level of 0.0002 dyne, cm.². The -5 db s/n ratio was used because there is less adaptation to the asias at 1 n less favorable s/n ratios. The rationale for presenting the speech at 60 db stemmed from reported works involving PB wordlists in which it was noted that under a "no noise condition" this was the approximate minimum level at which to achieve 96% to 100% intelligibility for the lists. The resulting technique the average trained speech level and s/n ratio was estimated to be approximately 10% to 15% for an average trained speaker. Although this would reduce the average score, it was fell that the results would be more discrete and meaningful in the final analysis. A constant of 33% was added to the resulting score obtained from the average number of correct words from the listener panel in order to depict the average speaker intelligibility score as approximately 50%.

The tabulation of the final data (see table 4.1) verified the rationale of this procedure in which it will be noted that the average for the 31 subjects was 52%. Also shown in table 4.1 is a rating of each photonal to 9 scale and the over-all ranks of the pilots. On the basis of the ranking method utilized. 3 of the 31 subjects were above average in intelligibility, 15 were average, and 8 were below average.

The intelligibility of speech under vibration was also investigated. Vertical vibration at frequencies of 7 and 11 c.p.s. at a constant amplitude of 1/4 inch was used. Tape recordings under these two conditions were obtained with the pilot repeating a sentence representative of normal connected discourse." These recordings were played at random to a panel of listeners with instructions to rank the speech of each pilot on a 1 to 7 basis with 1 being very good and 7 very bad.

The median score of 8 listeners responding to the standard sentence at 2 frequences, 7 and 11 c.p.s., for each pilot was used as the criterion measure. The results are shown in table 4.2. As noted in the table, recordings for subjects J, R, N, and W were not obtained. Also included in the table is the rank in total for both the 7 c.p.s. and 11 c.p.s. vibration conditions. The correlation of rank between the two conditions was statistically significant at the 1% level of confidence. The nopparametric statistic, Wilcoxon Matched Pairs, was used to evaluate the data. The results indicate a statistically significant difference between the two scores for each subject. The 11 c.p.s. appear to affect intelligibility more than 7 c.p.s. The distribution of these scores is shown infigure 4.1.

• "Tomorrow evening at this hour, the famous physician, Dr. J. O. Lee, will speak to you on a topic of vital importance."

WADC TR 59-505

TABLE 4.1

	· · · · ·	•	*
	- Score	Rating Scale	· · · ·
Subject	Percent Intelligibility	• 1 to 9	Rank in Total
A	56	5	10
B	55	. * 5	12.5
С	59	6	6
D	53	5	17.5
E	. 40	3	26
F	53	5	17.5
G ·	49	5 -	21
H	58	6	7
I	52	5	19.5
J	61	6	5
K	45	4	24.5
L	54	5	15
M	56	5	10
N	45	4	24.5
· 0 ·	63	6	4
P	39	3	27.5
Q	48	6 3 5 7	22.5
Q R	66		3
· S	54	5	15
Т	54	5 3 5	-15
U	39	⁻ 3	27.5
v	48	5	22.5
W	67	8	1.5
X	36	1	31
Y .	67	8	1.5
Z	37	8 2 5 5	30
AA	56	5	10
BB	55		12.5
CC	52	5	19.5
DD	38	5 3	29
EE	57	6	- 8

RELATIVE INTELLIGIBILITY SCORES OF 31 SPEAKERS WITH THE RESPECTIVE RANKINGS AND THE RELATIVE RANKS IN TOTAL

In an effort to determine whether the score for either the 7 c.p.s. or 11 c.p.s. vibrations condition showed any relationship to the rank of the speakers on the intelligibility section of the program, the scores under each of the two vibration conditions were ranked and the Spearman Rho was used to correlate the resulting rank with the rank from the word intelligibility program. In neither case was there a statistically significant relationship between the two scores. It would thus appear that, under the condition of vibration, the listeners use an entirely different set of concepts in rating the individual than they use under the word intelligibility program. The factor of individual differences as to the effect of vibration is also indicated. The vibration appears to partially confound the basic intelligibility score. The resulting tremor in the voice has a deteriorating effect that shows no direct relationship to the word intelligibility score.

WADC TR 59-505

1

TABLE 4.2

Subject	7 c.p.s.	11 c.p.s.
	2.0	5.0
B	5.5	4 .Ó
С	3.0	3.0
D	3.0	4.0
E	4.0	5.0
F	2.5	3.0
G	3.5	4.5
H .	5.0	5.0
I I	. 4.5	3.0
F	None	None
K	1.5	2.0
L	4.0	4.0
M	4.5	4.5
N	None	None
Ο.	5.5	6.0
P	- 5.0	5.0
Q i	4.0	4.0
R ·	None	None
S	7.0	5.0
Т	3.5	6.0
U	3.5	4.5
v	4.0	3.0
W	None	None
X	6.0	6.0
Y	4.5	6.0
2	3.5	4.0
AA	4.5	4.0
BB	4.0	5.0
CC	4.0	4.0
DD	5.0	6.5
EE	1.0	2.0

MEDIAN SCORES FOR SPEAKERS UNDER TWO VIBRATION CONDITIONS AS JUDGED BY LISTENERS UTILIZING A 1 TO 7 RATING SCALE

SUMMARY

Word intelligibility scores from 31 speakers were obtained. On the basis of a 1 to 9 scale the speakers' scores were ranked. Eight of the 31 subjects were above average, 15 were average, and 8 were below average. Utilizing a rating of 1 to 7, listeners evaluated the effect of vibration upon the intelligibility of connected discourse. There was a statistically significant positive correlation between the two conditions of vibration (1% level of confidence). However, there was a statistically significant difference in the ratings with the 11 c.p.s. vibration condition having a more deteriorating effect on intelligibility.

WADC TR 59-505

PART 2. EFFECT OF NOISE ON THE ABILITY TO PERFORM ADDITION

J. E. Steele, Maj., USAF, MC

INTRODUCTION

Noise is capable of interfering with effective human activity. As sound increases to intensities thousands of times greater than those encountered in ordinary experience, it produces potentially serious distracting stimuli. The present test was designed to measure the effects of high noise levels on the performance of a simple mental task.

TECHNIQUE

The intense noise (145 db) was produced by a locally designed broadband siren. The subject's ears were protected by muff-type protectors, Willson Sound Barrier No. 258. Each subject was tested individually in a small, reverberant room (figure 4.2). He was allowed 3 minutes to perform a number of serial additions. This was done first in quiet, then in noise, and again in quiet. Equivalent lists of addition problems were used. The following are examples of the addition problems used:

35 8 4 6 5 3 7 2/ 4 5 3 6 9

30 68475/9368157

The subject was required to add a row of figures until the sum equalled the underlined 2-digit number. He placed a slash-line following the last digit needed to form the sum.

SCORING

The performance score (S) was equal to twice the number of additions completed during noise (N) minus the number completed during the two quiet periods (Q_1 and Q_2) plus 3. Three was added to all scores in order to center the distribution in the 0 to 9 range as required by the recording methods. Scores outside this range were recorded as 0 or 9. Thus, the formula used was:

 $S = 2N - (Q_1 + Q_2) + 3$

RESULTS

A small control group of college students showed a slight average deterioration in performance in noise while the candidates showed an average increase in rate of performance. Errors in addition were much more common among the college students. The total number of errors for the candidates was 22 (about 1% of the problems worked). Seven of these errors occurred during the first quiet period, 5 during the noise, and 10 in the final period of quiet. They were ignored in the scoring because of their small number and apparently random occurrence.

The noise produced an average change in rate of addition which is approximately two fifths as great as the average difference in rate existing between the different subjects when adding in the

WADC TR 59-505

1.2.2

quiet. The reliability of the test for measuring individual susceptibility to noise-induced changes in performance is not known but is believed to be low. A score of 4 indicates no effect of noise on rate of addition. A higher score shows improved performance during noise. One fourth of the candidates showed a reduced rate of performance in the noise. The extreme was a 15% reduction. The maximum increase was 26% and the median 5%.

Noise at the levels used (145 db broadband) is physically harmless (except to unprotected ears). It has no direct effect on any common activity except to interfere with hearing. It does subject the body to a background of noticeable stimulation of a tactile nature due to the vibration of the body surfaces. This vibration may irritate the trachea sufficiently to produce mild coughing. Somewhat unpleasant resonances occur if the mouth is opened slightly or if the teeth rest together lightly. Sinus discomfort due to the vibration has been noted by individuals having some pre-existing sinus inflammation.

The effect such stimulation produces on an individual depends on his past experiences with noise in general and with similar noises in particular. Rapid adaptation is usual. Any activity required of the individual also affects his reaction to the noise, and individual variations show up. The purpose of this test was to discover such individual differences. The noise, being a diffuse stimulus, can tend to arouse a subject increasing his alertness. This is the type of effect which causes interference with sleep. The same arousal may distract a subject's attention from the performance of an assigned task. Paradoxically, when the noise has become familiar, it is relatively monotonous and may serve to shield a subject from more meaningful stimuli which might distract him. Subjects not assigned a task frequently appear drowsy or sleepy.

The effects observed in the present tests were not considered serious and were given little weight in the final recommendations.

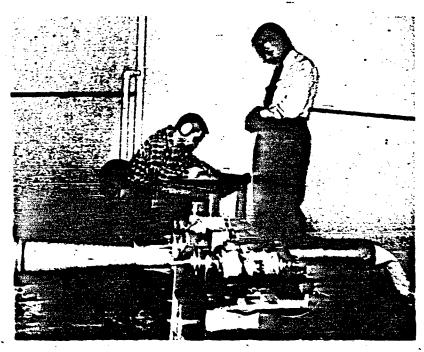


Figure 4.2. Sound Generator. Cloth Hose Conveys High-Pressure Air to Siren. Subject and Tester Wear Ear Defenders.

WADC TR 59-505

PART 3. THE INFLUENCE OF VIBRATION ON HOLDING THE HORIZONTAL POSITION UTILIZING THE EQUILIBRIUM CHAIR

R. R. Coermann, Ph. D. E. B. Magid, Capt., USAF, MC Walter Wolff

INTRODUCTION

High-performance aircraft and space vehicles, particularly during the period of re-entry, may encounter low-frequency, high-amplitude vibrations. The ability of man to perform in such an environment for any length of time may be of vital importance. The ability of a subject to maintain the horizontal position during low-frequency vibrations while counteracting pitch-and-roll disturbances was tested. The subject was blindfolded so that the modalities of equilibrium, other than vision, could be studied.

Changes in performance during vibration (when compared with static tests) are dependent upon physiological and psychological variables. Without vision, two main integrated systems function to maintain equilibrium. The labyrinth, an organ of special sense, detects the position of the head in space and the relationship of the head to the neck. The other system consists of a complex of nerve receptors distributed throughout the body. They have the general function of receiving various kinds of physical and chemical stimuli. Vibration affects only those receptors sensitive to displacement. They have been named "kineceptors" (Greek, kine - kinetikos, of motion) and include the receptors of touch, pressure, proprioception, and visceral sense. Pain receptors stimulated by stretching fall within this group. Organ displacement may be so great that not only visceral movements are perceived, but also the pain receptors are stimulated.

TEST TECHNIQUE

A chair has been constructed which can be moved in the direction of pitch and roll by two hydraulic cylinders (figure 4.3). These cylinders are driven by electrohydraulic valves connected to an electrical circuit in which the output of an ultralow frequency generator is fed. Motions of the chair produced by this random generator can be compensated for by a control stick installed on the chair. The blindfolded pilot was strapped in the chair with a lap belt and shoulder straps. It was his task to compensate for all motions produced by the random noise generator by using the control stick and to hold the chair as closely as possible to what he considered his horizontal level. The entire chair was installed on a shake table, shaking with a constant amplitude of 1/4-inch double amplitude in the frequency range of 0 to 15 c.p.s. (see figure 4.3). An oscillograph simultaneously recorded the deviation of the position of the horizontal level and the output of the random noise generator.

TEST PERFORMANCE

The pilot received a 10-minute period of exercise without the blindfold and then a 10-minute period with the blindfold, both with and without vibrations. A short test with vibrations introduced the vibratory stress to the subject. The test profile consisted of 6 tests, each of 1-minute duration. The vibrations were in the frequencies of 3, 5, 7, 9, 11, and 15 c.p.s. Before and between each run a record of 1 minute without vibration was taken.

The pulse rate, respiration rate, and blood pressure were taken at the beginning of each test, immediately before the first and immediately after the last run with vibrations. After each run the pilot was asked to remark on the various sensations he experienced.

WADC TR 59-505

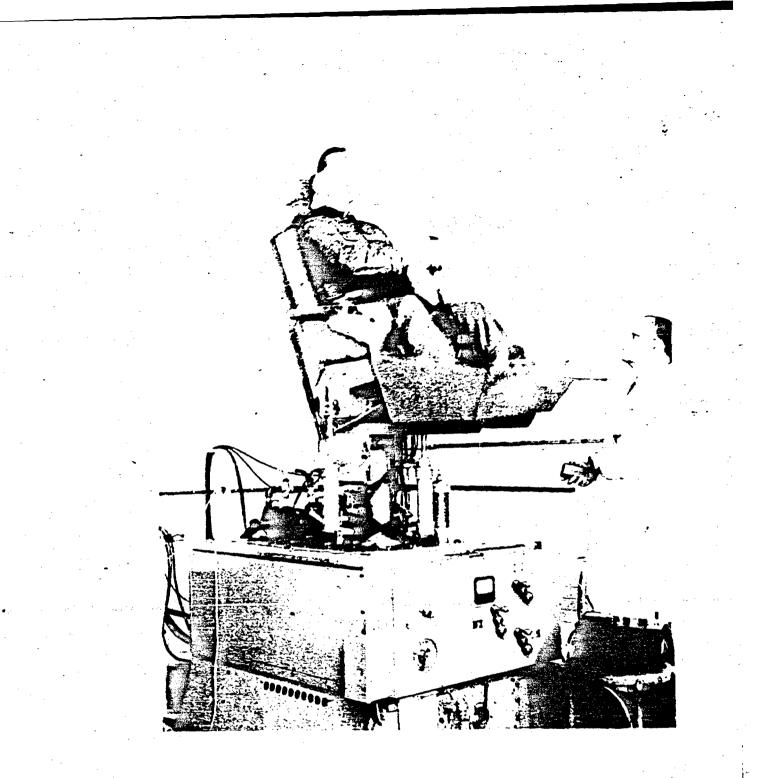
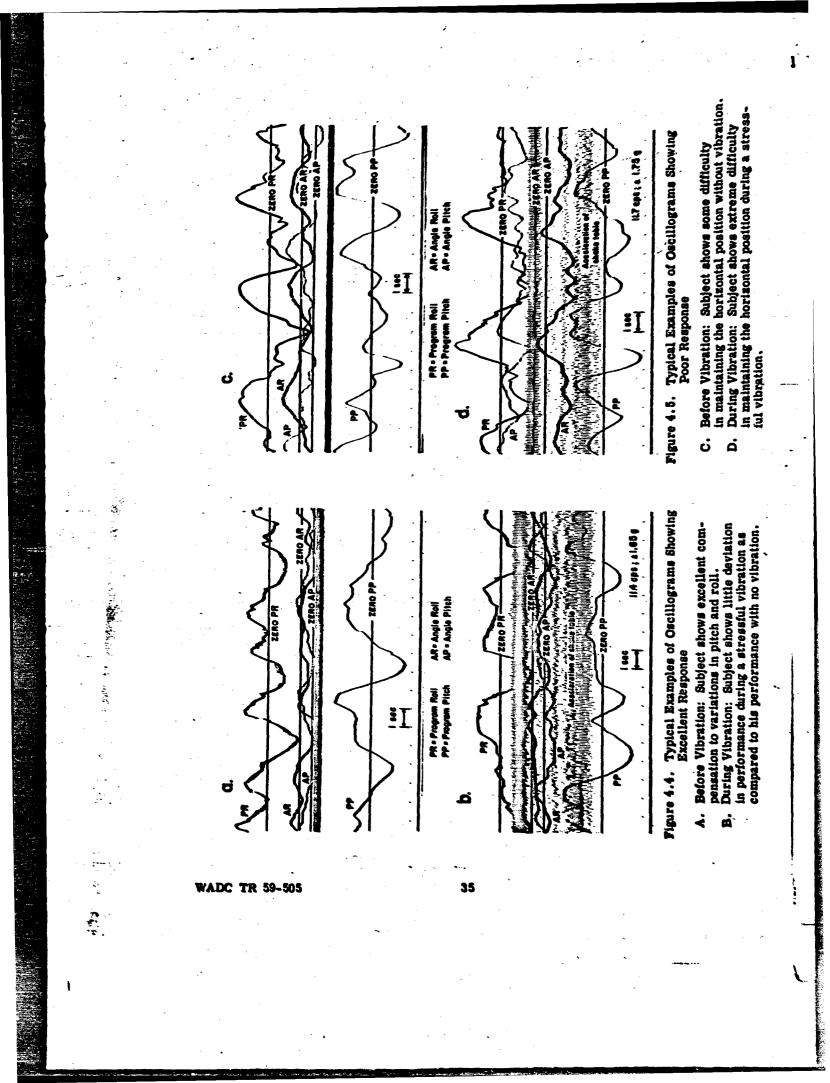



Figure 4.3. Equilibrium-Vibration Chair. Subject Holds Control Stick. Medical Monitor Holds On-Off Control Box.

WADC TR 59-505

EVALUATION OF THE OSCILLOGRAMS

The following six traces are recorded on the oscillograms (see figures 4.4 and 4.5):

- 1. Angle of the seat in roll (AR)
- 2. Program voltage to the roll control valve (PR)
- 3. Acceleration of the shake table (Vibration)
- Angle of the seat in pitch (AP)
- Program voltage to the pitch control valve (PP) 5.
- 6. One-second time marks

The zero lines for the angles of pitch and roll were determined by placing the seat in the horizontal position. The zero lines for the pitch and roll voltages were taken at zero voltage input. The accelerometer was calibrated statically.

In the evaluation of a subject's performance, the area above and below the zero line of each record was integrated by a planimeter giving the factors:

1. AR = Angle in roll: subject's deviation from his horizontal position in roll during vibration

2. PR = Program in roll

3. AP - Angle in pitch: subject's deviation from his horizontal position in pitch during vibration

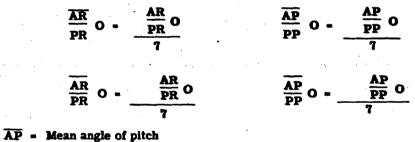
4. PP = Program in pitch

The ratios $\frac{AR}{PR}$ and $\frac{AP}{PP}$ were calculated for each record. The frequency of vibration and acceleration of the shake table were determined by the acceleration tracing and the time marks. The analysis of the curves gave 13 values for the quotient $\frac{AR}{PR}$ and 13 values for the quotient $\frac{AP}{PR}$ Seven of these values of each group were taken without vibration ($\frac{AR}{PR}$ O and $\frac{AP}{PP}$ O) and six with vibration ($\frac{AR}{PR}$ V and $\frac{AP}{PP}$ V). Two seemingly appropriate methods could be used to calculate the final score (F) from the above values (see table 4.3):

1. The deviation of each $\frac{AR}{PR}$ V and $\frac{AP}{PP}$ V from the previous $\frac{AR}{PR}$ O and $\frac{AP}{PP}$ O was calculated. The average deviations were expressed as numbers for roll (R) and pitch (P). The final score (F) was calculated from $F = \frac{R+P}{2}$. Using this method every performance was related to the preceding performance without vibration. Thus, the skill of the subject to operate the equipment was compared with his performance only. The subject could choose his own mean horizontal position after every vibration. This was important because the $\frac{AR}{PR}$ and $\frac{AP}{PP}$ values depend not only upon variations of position but also upon the mean position of the seat during the measuring period. It was not the purpose of this test to investigate the ability of the subject to operate the equilibrium seat and to hold a given position. The purpose was to check the effect of vibration upon his ability to hold what he considered the horizontal level. This method has the disadvantage of omitting any residual effect just preceding the vibratory stress. However, the results showed that many of the subjects presented remarkable changes of the $\frac{AR}{PR}$ O and $\frac{AP}{PP}$ O values after the test

runs, indicating that even after 1 minute of recovery the subject was still quite disturbed.

WADC TR 59-505


TABLE 4.3

A RATING OF THE RESULTS

BASED UPON A 1 (POOREST) TO 9 (EXCELLENT) CLASSIFICATION

	Method 1	-	Method 2	
Group	Mean Deviation from the Horizontal Position During Vibration	Rank	Mean Deviation from the Horizontal Position During Vibration	Rank
:	0.000-0.150	9	0.000-0.100	9
I	0.151-0.230	8	0.101-0.160	8
	0.231-0.300	7	0.161-0.190	. 7
	0.301-0.370	6	0.191-0.250	6
П	0.371-0.430	5	0.251-0.300	- 5
	0.431-0.500	4	0.301-0.350	.4
•	0.501-0.570	3	0.351-0.400	. 3
ш	0.571-0.700	2	0.401-0.500	2
	0.700	1	0.500	1

2. The average of all $\frac{AR}{PR}$ O and $\frac{AP}{PP}$ O values were calculated. Then the average of the deviations of this value were calculated:

AR - Mean angle of roll

- Change

= Sum

- Relative to test with no vibration

Relate the average of the $\frac{AR}{PR}$ V and $\frac{AP}{PP}$ V values to the $\frac{AR}{PR}$ O and $\frac{AP}{PP}$ O values to obtain the final score. This method eliminates the skill of the subject to operate the equilibrium chair, and it also takes the residual effect of vibration into consideration.

WADC TR 59-505

RESULTS

Subjective responses to the low-frequency vibration tests are shown in table 4.4. At 7 and 9 c.p.s., 11 of the subjects experienced chest pain substernally or over the precordium, but had no pain of the left upper extremity as is experienced with myocardial ischemia. All sensations of pain, whether in the chest or abdomen, were usually described as mild to moderate in intensity, of slow onset, and increasing with crescendolike characteristics. Six of the subjects experienced either moderate pain of the abdomer, paraumbilical in location, or a feeling of tenseness in this region. Only one of these subjects fell within the group considered excellent. At 11 and 14 c.p.s., 16 of the subjects experienced a moderate to exquisite urge to urinate and/or defecate.

Seven subjects felt that the vibrations seemed to completely mask the sense of equilibrium, particularly at the frequencies above 7 c.p.s. These subjects generally fell within the poorer group. Three subjects experienced sweating and stated that they felt very warm and uncomfortable. They appeared to be the most apprehensive, and two of them had the lowest ranking scores.

Three of the pilots, when blindfolded, turned their heads laterally approximately 15° to 20° toward either side. When questioned they gave histories of moderate to severe otitis-media or mastoiditis occurring during their childhood. The head was turned toward the side of the affected ear. Interestingly though, they performed better than half the group. None of the group experienced vertigo or air sickness.

One member of the group did not finish the test because he developed severe pain of the left upper quadrant. He gave a history of malaria with splenomegaly which occurred approximately 10 years before. Upon examination, the subject did not present splenomegaly or hepatomegaly. Tenderness of moderate intensity was present at the area of the spleen.

Pulse rate, blood pressure, and respiratory rate showed only slight changes after the runs. Ranking of the subjects in accordance with their final scores is shown in table 4.5.

DISCUSSION AND CONCLUSIONS

The results suggest that the labyrinth is little affected by vibrations under the described experimental conditions. As the frequency of vibration increased, the movements of the chair became more masked by the vibrations due to the tremendous increase in kineceptor stimulation and, together with the stressful conditions of pain and extreme discomfort, the pilot's ability to perceive the horizontal plane became severely challenged.

Performance in this study was affected by mechanical alternating forces acting directly on the head and extremities, and increased muscle tonus due to the alternating stretching of tendons and ligaments of the skeletal musculature. At certain frequencies pain of the chest or abdomen may be encountered and at other frequencies the urge to urinate or defecate may be experienced. Vibration, encountered during this study, then presents the body with a multifaceted stress, testing not only the physiological status but also psychological processes. As frequency increased, the subject experienced extreme discomfort, pain, and bladder and sigmoid colon urgencies. With rapid, severe, alternating forces acting upon various body parts, associated with increase in work output, motivation becomes a prime factor in determining performance of equilibrium. It then follows that these experiments cannot be assured to represent a clear-cut test of the influence of vibration on the sense of equilibrium, per se, but rather must be taken as the individual's total response to vibrational stress and the decrement of performance under these conditions. Only future research can estimate the validity of this test for the selection of specific qualification.

WADC TR 59-505

TABLE 4.4

SUBJFCTIVE RESPONSES TO VIBRATION TESTS

Subject	1	п	Ш	IV	V	VI
Á		· · · · · · · · · · · · · · · · · · ·	• -	8		
B				_ - .		
Ĉ		81			S 1	S1
Ď		S1		M	M	
E	· M .	,			M	
F				8		SI
G	÷	M		M		
H	• .					
H I	M	S1		M		
J K	S					
K			· · ·			
L				S1		
M				S1	S 1	
N					I	
0		M	M			
P		_ .				
Ŕ	-	M			S 1	M
R S	8		M			
8						
T				M		S1
U				34		
V W				M		
x	•	M	S 1	S 1	SI	SI
Ŷ		-	54	51	SI	1.74
Ż				S	SI	-
AA			-	M		
BB				й	. •	SI
ČČ ·					S1	
DD		· · · <u>·</u>	· • .	Sì	SI	•
EE				S		

I - General Discomfort II - Loss of Sense of Equilibrium III - Warm with Diaphoresis IV - Urge to Urinate and/or Defecate V - Pain in Chest

Sl – Slight M – Moderate

S - Severe I - Intolerable

VI - Discomfort and/or Muscle Tenseness in the Abdomen

WADC TR 59-505

TABLE 4.5

PERFORMANCE DATA ON VIBRATION TESTS

-	Method	11	Method	12
Subject	Final Score	Rank	Final Score	Rank
A	0.246	7	0.186	7
B	0.214	8	0.152	8
С	0.273	,7	0.232	6
D	0.407	5	0.264	5
E	0.975	1	0.517	1
F	0.243	7	0.195	6
Ĝ,	0.330	6	0.195	6
H	0.157	8	0.121	8
I	0.671	2	0.375	3
J	0.148	9	0.075	. 9
K	0.355	6	0.313	4
L	0.352	6	0.371	3
M	0.554	3	0.350	4
N	0.449	4	0.264	. 5
0	0.723	1	0.621	• 1
P	0.310	6	0.263	5
Q	0.227	8	0.198	6
R	0.646	2	0.544	1
S	0.369	6	0.249	6
T ·	0.393	5	0.292	5
U	0.241	7	0.181	7
V .	0.291	7	0.196	6
W	0.482	4	0.339	4
X	0.352	6	0.228	6
. ¥	0.417	5	0.160	8
Z,	0.561	3	0.302	4
AA ()	0.726	1	0.499	2
BB	0.317	6	0.180	73
CC ·	0.354	6	0.362	. 3
DD	0.396	5	0.288	. 5
EE	0.223	- 8 -	0.176	7

WADC TR 59-505

CHAPTER V

HEAT TESTS

J. Gold, Capt., USAF, MC

INTRODUCTION

High-performance aircraft and space vehicles are expected to heat to sustained high temperatures, especially during the period of re-entry. It is therefore necessary to see how man is equipped to withstand heat, and if some men can withstand it better than others.

What effects do progressive heat loads have on humans? The one that is of chief concern is that, with the absorption of more and more heat, the body will gradually be thrown into the clinical state known as heat stroke, a condition in which there is a very high mortality. It is characterized by coma or extreme stupor, cessation of sweating, hot, dry, red skin, high rectal temperature (usually over 105° F.), and high skin temperatures. The heat-dissipating mechanisms of the body are unable to keep pace with the absorption of calories from the outside, so that gradually the body absorbs more than it can handle, and incipient heat stroke develops.

The cessation of sweating is an indispensable condition to the development of heat stroke. It follows that sweating is the chief mechanism for dissipating heat. However, the process of sweating is dependent on many factors—the primary hypothalamic heat-dissipating center, the cardiovascular system, the sweat glands, relative hydration, neural endowment, acclimatization, and many others. There are many measurements which can be made that give a picture of the sum total of these heat-dissipating mechanisms so that, by providing controlled heat exposures and taking the proper measurements, it is possible to distinguish poor heat subjects from good ones.

PROCEDURE

Environment and Length of Exposure:

Each subject was exposed to an ambient temperature of 130° F. with a relative humidity of 8% and an air motion of 3 to 5 m.p.h. (see figure 5.1).

Clothing:

Clothing consisted of one set of thermistor underwear (long cotton underwear covering all four limbs), one K-2B flying suit (a light-permeable suit), one pair of cotton socks, and one pair of leather shoes. Total clothing is equal to approximately one clo insulation.

Other Measurements and Examinations:

1. Nucle weight starting and at termination yielded a total sweat loss (total weight loss) accurate to ± 10 grams.

2. Clothed weight starting and at finish yielded data for calculating the evaporative loss and, together with 1., the ratio of evaporative loss over total weight loss (E/S ratio).

3. Heart rate was recorded simultaneously on EKG on a cathode-ray oscilloscope and on paper.

WADC TR 59-505

(Parats 5, 1) States to the construction of the Deriver Staples Are Attached to Forese the of Festive ERSE to a Source Attachegity Extremities.

4. Blood pressure and EKG readings were taken continuously.

5. Subject was given auscultatory heart examination before and after heat exposures.

Three calculations were made by which subjects were evaluated for their capability to withstand heat:

1. Body Heat Storage. — Body heat storage is a measure, in terms of calories per square meter of body surface per hour, of the heat which a body will store when exposed to a hot environment. The equipment used to measure body heat storage is principally the set of thermistor underwear. Multiple skin thermistors which record skin temperatures from all parts of the body are located in this long cotton underwear. In addition, attached to this suit is a soft malleable rod, with a thermocouple at the end. This is inserted into the rectum to a depth of about 10 cm. and thus acts as a rectal thermocouple from which deep body temperatures are read. The temperaturesensing devices feed into a Brown potentiometer which automatically and continuously records in sequential fashion the temperature readings from each thermistor and/or thermocouple. These readings, taken every 15 minutes, are then transferred onto a printed form from which body heat storage is calculated (see figure 5.2).

Body heat storage is probably the most reliable parameter for evaluating the performance of a subject under heat stress. The better his heat dissipation is, the lower will be his net absorbed calories.

2. Modified Craig Index of Strain. — The Modified Craig Index of Strain consists of three factors: a. terminal heart rate divided by 100, b. sweat rate in terms of kilograms per hour, and c. rectal rise rate in terms of degrees centigrade per hour. These three factors are simply added together to yield a sum, which is the index. And obviously, as the subject incurs more strain, the index becomes higher.

3. <u>A New Heart Index.</u>—A new correlative index based on heart rate* has been developed and expresses a theoretical relationship—a ratio between "theoretical heat absorbed" and actual heat absorbed. The higher the index, the greater is the strain. The index correlates highly with body heat storage.

SCORING

The entire group of 31 candidates was used as its own control. The data were evaluated statistically and each candidate was assigned a score in each of the three parameters: body beat storage, Modified Craig Index of Strain, and the new heart index. The three scores which each subject accrued were weighed equally, added, and an average was obtained. The relative ranking and rating of all candidates were based on this average.

RESULTS

The results of this ranking are tabulated in tables 5.1 and 5.2. Assigned statistical scores are indicated for each of the three parameters used. Table 5.2 shows the rank and rating of each candidate. The best possible score was 9.0; the worst, 0.0. The bulk of the scores ranged between 3.0 and 6.0. Those who made above 6.0 were considered relatively superior, while those who scored below 3.0 were considered poor.

 Further details of this index, developed by Capt. Joseph Gold, USAF, MC, of the Aerospace Medical Laboratory, will soon be published in a WADC technical report and in the Journal of Applied Physiology.

WADC TR SH-505

<u>4</u> 3

の日本の目前

Ē

BODY HEAT STORAGE CHART

10 10 <td< th=""><th>Area</th><th>ra Coefficient</th><th>t No.</th><th>Location</th><th>Temperatu</th><th>atures</th><th></th><th>Ē</th><th>Temperatures in All-Weather Room</th><th>ee in Al</th><th>1-Woal</th><th>her Roo</th><th></th><th></th></td<>	Area	ra Coefficient	t No.	Location	Temperatu	atures		Ē	Temperatures in All-Weather Room	ee in Al	1-Woal	her Roo		
0.014 1.1 Nad 0.1 <td< th=""><th>1</th><th></th><th>ĺ</th><th></th><th></th><th>Þ</th><th></th><th>8</th><th>=</th><th>8</th><th>F</th><th>5</th><th></th><th>F</th></td<>	1		ĺ			Þ		8	=	8	F	5		F
Mit 0.18 7.1 Example For Markin For	3			Head	91.9	96.5	100.1		91.7		1			1
Multication Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>						8.0A					8		8.8	Í
The Color Color <thcolor< th=""> Color Color</thcolor<>	Z		11	Bcapula			1.8	•		100.0	100.3	-	100.1	8
1-1 Andonan 0.4.1			3	Nipple	98.7					200	23		0.001	
Tot Manifold H.1 H.3 H.1 H.1 <thh.1< th=""> H.1 H.1 <</thh.1<>			1-9	Abdomen	96 -		8.8		5.00				100.0	i g
Mole 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.11 0.01 <th< td=""><td></td><td></td><td>1-1</td><td>Manifold</td><td>94.7</td><td>٩.1</td><td>9.6</td><td>8.00</td><td>8.1</td><td>5.8</td><td></td><td>4.6</td><td></td><td>Ş</td></th<>			1-1	Manifold	94.7	٩.1	9.6	8.00	8.1	5. 8		4.6		Ş
W 0.08 Dist Hand, Manifold Dist Dist <thdist< th=""> <thdist< th=""></thdist<></thdist<>	5		11	Upper Arm, Right Lower Arm, Left	95.8 93.8	98.0 91.0	96.9 6.1	0.0 8	23	83	8	8	8	8
0-414 13-1 Upper Ani. Leg. Right 1-3 M-1	3		111	Hand, Manifold Hand, Single	91.6	83.1	100.0		101.1	102.0	100.5		101.0	M.4
0.01 1.2 Poot, Manifold 0.11 0.10 0.03 00.1	2		<u></u>	Upper Ant. Lag, Night Upper Post. Lag, Laft Lower Ant. Lag, Right Lower Post. Lar. Lat.			5.55 5.55 5.75		959 888		822		* 3 *	\$ 3 \$
M: I = 0.45 = 1.32 Peckal Temperature, T, 100.3 100.1 100.1 100.3 100.4 100.1 101.1 - 10.0 -10.1 -10.1 -10.1 -10.1 -10.1 101.1 -10.1	Ĩ		41 41	Poot, Maalfold Poot, Bingle		0.7 6 7 6		a a			1 88	8. 101 101	101.2	101
1.82 Awrage Run = 39.1 Cui./m. ³ Tramponuru, · F. M.3 M.1 M.1 M.2 M.4 M.2 M.4 M.3 M.4 M.1 M.1 M.1 = 39.1 Cui./m. ³ /hr. (0.43) Awrage Run 31.3 31.1 31.1 31.1 31.1 31.4 31.4 31.4	1	66.1 × 0.63 × 1	#	Rectal Temperature,	, 100.3	100.3	I.M.I	8					1. Int	102.3
Cui./m. J/u. (0.41) Avenue Bila 31.3 31.3 31.5 32.1 33.6 33.6 33.6 33.6 33.6 31.3 61.7 (0.67) Reckel 91.3 61.3 61.1 61.1 61.1 61.1 61.1 61.1 6	• •	1.03 39.0 Cal./m. ⁸		Average Rida Temperature, • P.	2	8. 8								101.1
Average Body Temperature, r F. 60.5 64.6 70.6 90.6 200.1 200.2 200.3 200.6 1 Body Mest Rorage - Body Veight in Ig.	٠	19.9 Cul./m. ² ,		(0.83) Average Stin (0.67) Nectal	21.3 6.17	8.18 6.1	32.5 67.1	32.7		33.6	22.9			
 Body Neight in hg. Body Veight in hg. Apositic Reat of Body 				Awings Body Temperature, • 7.		8. .5	9.66				8.8	100.3	100.6	
			t Borag Gight In 1 Blast of	R. Bob							•			

Figure 5.2. Sample Body Heat Storage Chart

1.28 - Increase of Aremae Body Temperature is • C. 1.82 - m.² of Body Surface

WADC TR 59-505

TABLE 5.1

Subject	Assigned Statistical Score Index of Strain (Modified Craig)	Assigned Statistical Score Body Heat Storage (cal./m. ² /hr.)	Assigned Statistical Score Correlative Heart Index (New Index of Strain)
A	7.6	4.1	3.7
B	5.8	4.1	- 0.2
С	7.9	- 1.4	. 6.5
D	· 4.8	- 0.0	6.9*
E	5.4	6.2	ð.2
F	5.9	3.1	3.2
G	8.6	8.2	9.0
Ĥ	7.5	8.4	1.4
· I .	. 1.7	9.0	7.7
J	3.2	2.6	4.3*
K ·	1.3	8.1	6.5
L	4.3	5.8	6.0
· 14	4.5	2.6	3.2
N	- 4.4	5.9	5.0
0	1.5	1.5	4.3
P	* 7.8	8.7	8.4
Q	8.3	7.6	7.7
R	3.1	0.8	3.2
S	1.7	7.9	7.3
T	0.2	3.1	0.8
U	7.7	7.6	4.3
Ŷ	5.7	4.5	6.9
W	0.6	4.0	0.1
X	0.5	0.8	0.0
Y	2.3	1.8	4.8
. 2	5.5	0.5	6.6 .
AA	7.5	5.4	4.0
BB	4.8	6.3	3.3
CC	4.2	1.9	6.9
DD	4.9	8.2	5.8
EE	5.2	3.1	4.5

FINAL SCORE TABULATION OF HEAT TESTS

* Estimated

Storing in the second state of the second stat

7

s carrier de la station de la st

WADC TR 59-505

45

のない。現在の日本のないでは、

TABLE 5.2

Rank	Subject	Score
1	Ć G	8.60
2	P	8.30
3	Q	7.87
2 3 4	Ŭ	6.53
5	DD	6.30
6	I .	6.13
7	E	5.93
8	. H	5.77
9	· • • • •	5.70
10	AA	5.63
11	8	5.63
· 12	L	5.37
13	K	5.30
14	C	5.27
15	A	5.13
16	Ň	5.10
17	BB	4.80
18 19	CC EE	4.33 4.27
20	Z E	4.20
20 21	F	4.07
22	D	3.90
23	M	3.43
24	B	3.37
25	· J	3.37
26	. Y	2.97
27	Ō	2.43
28	R ·	2.37
29	W	1.57
30	T	1.37
31	X	0.47

FINAL RANKING OF CANDIDATES ON HEAT TESTS

WADC TR 59-505

DISCUSSION

The foregoing selection system yields valid information in general, but represents a framework that can be much improved as new techniques for measuring physiological performance become available. The system is extremely sensitive in picking out those who react very well to heat and, also, those who react very poorly. For the majority which falls in between these two groups, the system must be regarded as less sensitive. Any system of selection, unless actual performance under expected conditions can be incorporated into it, cannot be regarded as a positive one. However, such a system negatively selects—that is, it weeds out those who would be unsuitable for physical or physiological reasons. This fact, combined with the fact that the system can differentiate (but not sharply) the superlative from the average, makes an initially effective selection program.

ADDENDUM

Certain cardiocirculatory changes not reported previously were recorded during this program. They were concerned mainly with EKG and auscultatory findings.

Changes seen in respect to EKG were: 1. inversion of T-wave, 2. disappearance of T-wave, 3. S-T segment depression, 4. occasional unifocal extrasystole, and 5. delayed intrinsicoid deflections.

ĩ

WADC TR 59-505

Changes seen in respect to auscultatory findings were in the development of transient systolic murmurs. These cardiocirculatory changes will be elaborated in a forthcoming paper by Dr. Gold.

CHAPTER VI

PHYSICAL FITNESS TESTS

C. L. Wilson, Capt., USAF, MC

APPROACH TO PROBLEM

Research has been accomplished in the following important areas: cardiopulmonary physiology, pressure breathing, autonomic and central nervous system physiology, physical fitness, physical conditioning, and factors influencing motivation.

This research has extended over a 5-year period and represents the combined experiences of Capt. T.F. McGuire, USAF, MC, Capt. F.J. Leary, USAF, MC, and Capt. C.L. Wilson, USAF, MC. Capt. McGuire^{6.1,6.2} studied previously developed stress tests and developed new ones. McGuire's reports on this early experience indicated that this test battery would be a valuable starting place for special project crew selection programs.

As described in the Introduction, this particular testing program had candidate recommendation as its main goal. Identifying valuable nonspecific tests was a secondary consideration for this particular project. The coinvestigators, with invaluable assistance from the program coordinator, agreed that certain necessary departures would be made from the physical fitness profile recommended by McGuire. These changes in McGuire's suggested tests with substantiating reasons are described in Appendix II.

Several additional tests were incorporated into the physical fitness test program. These are discussed below:

Treadmill:

÷

1.1

ALL SAFET

来三日

A multitude of treadmill tests has been used to study physical fitness, stamina, motivation, physiological responses and reproducibility of test results. Balke^{6.3} recommended a treadmill test profile. His work demonstrates enviable reproducibility. This test was adopted because of its ease of administration, reliability, and the availability of previous population performance data. An unintentional, yet irrevocable error (since corrected) committed by the author greatly altered the results of this test. Balke's instructions were to raise the treadmill each minute "to such an angle that the vertical ascent becomes 1% of the belt travel in a given time." The treadmill angle was raised 1% of 90° or 0.9° each minute. This modification is a more severe test, and it was kept constant for all candidates. It is recommended that the Balke technique be pursued in future testing profiles.

Catacholamines Analysis:

This study was recommended by McGuire and was performed with additions.*

 The samples were analyzed by Bio-Science Laboratories as subcontractors through the Lovelace Foundation, Albuquerque, New Mexico.

WADC TR 59-505

Serum Corticosteroid Analysis:

Hale et al.^{6,4,6.5} demonstrated a significant rise in the hydrocortisone and the corticosteronelike fraction in plasma of B-52 aircrew members. This rise did not represent a diurnal variation, but rather reflected the effect of a prolonged flight. Marchbanks et al.^{6,6} noted a similar rise in urinary ketosteroids. The coinvestigators believed it would be valuable to document the variations in plasma corticosteroid rise during MC-1 tests.*

DISCUSSION OF THE PHYSICAL FITNESS TESTS

The preceding portion of this chapter has discussed why certain tests were incorporated into the physical fitness test portion of the Project Mercury Candidate Evaluation Program. When there were significant departures from previous techniques, these were detailed and the reasons were defended. The remainder of this chapter will be devoted to a detailed description of the techniques, results, and interpretation of each test.

Harvard Step Test (see figure 6.1):

Equipment:

a. Platform - 19-1/2 inches high, rubber top, nonskid type, top area 2 feet square

- b. Metronome capable of 1 beat/second
- c. Clock with sweep second hand
- d. Counter to record number of steps climbed

Technique:

The subject dressed himself in long cotton underwear (lower torso portion only), cotton socks, and termis shoes. He was thoroughly briefed on how to accomplish the test. The metronome was calibrated against an electric clock for 30 seconds before each test. The investigator demonstrated that the subject was to step upon the platform during the first second, step down during the second second, step up during the third second, and continue this performance for 5 minutes. The subject was advised that he might crouch forward as low as he chose when stepping up, thus negating the necessity of coming to a full upright position on the step. Many subjects will fall behind the metronome if they are directed to come to an erect position on the step. The subject was further advised that if he was unable to keep up with the metronome, he was to continue as near as possible to a metronome pace. This last direction was a necessary modification since the close schedule of the NASA candidates rendered it impossible to schedule each subject for more than one test. When the subject stumbled or fell he was encouraged to continue the test if he was not injured. The metronome was then started, and as soon as the subject began his first step-up the clock was started. During the test no encouragement or directions other than repetition of those stated above were given. At the end of 5 minutes the subject immediately sat down. The investigator recorded his pulse during the following three time periods, the end of the test being considered time zero: from 1 to 1-1/2minutes, from 2 to 2-1/2 minutes, and from 4 to 4-1/2 minutes. All pulses were recorded by precordial auscultation. The recording of the pulses ended the test.

Hale and Kratochvil of the School of Aviation Medicine, Randolph Air Force Base, Texas, generously offered the assistance of their laboratory. This contribution was gratefully accepted.

WADC TR 59-505

Figure 6.1. Harvard Step Test

WADC TR 59-505

Example Record:

Pulse	1 to 1-1/2	Minutes	after	Test	=	<u>79</u>	x	2	*	<u>158</u>	beats/minutes
Pulse	2 to 2-1/2	Minutes	after	Test	*	<u>73</u>	x	2	=	<u>146</u>	beats/minutes
Pulse	3° to 3-1/2	Minutes	after	Test	z	<u>64</u>	x	2	-	<u>128</u>	beats/minutes
	•		-	T	ota	l Pi	ıls	ė,	3	<u>432</u>	

Number of Steps Climbed = 111

Scoring:

Two important subject responses were reflected in the scoring system which was adopted

a. A high postexercise pulse is believed to reflect poor physical fitness.

b. A low number of step-ups reflects poor subject participation.

The total step-up value (S) was divided by the total pulse value (P) and multiplied by 150 to give the final Harvard step test score. (For simplicity of scoring, all final scores were programmed to fall between 0 and 100.) Thus,

 $\frac{S}{P}$ x 150 = score

Using above example, the final score would be:

 $\frac{111}{432}$ x 150 = 39

Results:

All candidates were able to perform for 5 minutes. Four candidates were unable to keep up with the metronome and executed less than 140 steps during the test. The mean step test score was 52.8. The standard deviation (σ) was 5.3.

Narrative Example Performances:

Two separate narrative summaries of subject performances are as follows:

a. Subject performed the test with considerable difficulty. After 2 minutes, he was not able to keep up with the metronome. He was instructed to keep up as steady a pace as possible. He succeeded in completing the 5 minutes, but only climbed 111 steps with a very high pulse, giving a score of 39.

b. Subject performed this test with great ease and during the last 30 seconds increased his pace well above metronome tempo to pick up an additional 5 steps just to see if it could be done. His score was 58.7.

Interpretation:

The coinvestigators interpreted an above average score as desirable and a crude expression of better than average physical litness. Likewise, they interpreted a lower than average score as a reflection of poorer than average physical fitness and undesirable. WADC TR 59-505

Flack Test:

- Equipment:

a. Rubber mouthpiece with connecting tubing

b. Mercury column manometer

c. Electric clock with sweep second hand

Technique:

Subject sat on a chair in front of equipment. He was instructed as follows: "The goal of this test is to hold the pressure as long as you can. Do not hyperventilate before the test. Place the rubber mouthpiece into your mouth. Take in a moderate breath, then blow into the mouthpiece in such a manner as to support the column of mercury at 40 mm. As soon as the column reaches a height of 40 mm. the time clock will be started. You will not be able to see the clock during the test. Do not lock the air pressure in your mouth with your vocal cords closed but let the pressure continuously come from inside your chest. You may make a tighter seal between your lips and rubber mouth hose by use of your hands. The mercury column may fluctuate above 40 mm. but as soon as the height of the column drops below 40 mm. the clock will be stopped. There will be only one opportunity to perform this test." When the investigator was satisfied that the subject understood the directions, the subject was instructed to begin. He was carefully observed to see that he was following directions. Facial plethora and jugular vein distension imply a high intrathoracic pressure and mean the subject is performing correctly.

Scoring and Results:

The score is that elapse of time in seconds from the moment the rising mercury column first reaches a height of 40 mm. until the subject is exhausted and unable to hold it at or above 40 mm. The mean time was 66 seconds; σ was 31 seconds. No one performed more than minus 2 σ from the mean. One candidate was 2.3 σ above the mean. Another candidate was 3.4 σ above the mean. Both of these performances are outstanding. Both were chosen as Mercury Astronauts.

Narrative Example Performances:

Two separate narrative summaries are as follows:

a. This subject had the best performance of the entire group on this test, holding the column of mercury for a total of 171 seconds.

b. The subject performed the Flack test in a substandard fashion, holding the column of mercury for only 27 seconds.

Interpretation:

¥

The coinvestigators interpreted the test results to crudely represent motivation. Those who performed longer appeared to have better than average motivation.

WADC TR 59-505

Valsalva Overshoot Test (see figure 6.2):

Equipment:

- a. Same as for Flack Test and, in addition,
- b. Sphygmomanometer
- c. Stethoscope

Technique:

Subject sat comfortably on a chair. Three resting systolic blood pressures were recorded at 1-minute intervals. Then the investigator inflated the blood pressure (BP) cuff to 160 mm. Hg, placed the stethoscope in place over the brachial artery, and instructed the subject to blow into the mouthpiece and support the mercury column to a height of 50 mm. for 15 seconds. As soon as the column attained a height of 50 mm. an assistant started the electric clock. At the end of 15 seconds the assistant instructed the subject to breathe out normally and relax. Immediately after the breath was exhaled a systolic pressure was recorded utilizing the technique recommended by the American Heart Association.*^{6.7} After a 1-minute rest, a second test identical to the first was performed. A total of five tests was accomplished. Each time the post breath holding systolic blood pressure was recorded.

Example Record:

 Resting Systolic

 1.
 116 mm. Hg

 2.
 124 mm. Hg

 3.
 122 mm. Hg

<u>124</u> mm. Hg
 <u>126</u> mm. Hg
 <u>126</u> mm. Hg
 <u>124</u> mm. Hg
 <u>120</u> mm. Hg
 <u>116</u> mm. Hg

Test Systolic

Scoring:

The coinvestigators developed a simple formula to express the relative rise in systolic pressure during the test:

$s_2 - s_1 = score$

s₂ is the average test systolic value

s₁ is the average resting systolic value

Results:

The mean test score was 4.9. The σ was 9.3 One test was not performed because of an insolvable scheduling problem. Eighty-three per cent of candidates tested were within 1 σ of the

WADC TR 59-505

^{*} This suggests that the mercury column of the sphygmomanometer be lowered at 3 mm./pulse beat to record indirect blood pressures.



Figure 6.2. Valsalva Overshoot Test

WADC TR 59-505

mean. This is not surprising, since there were no great differences in the systolic pressure recordings during the test when compared with the resting readings. The following explanation is the probable reason why indirect systolic pressure measurements do not show the marked rise in systolic pressure that is seen when taking direct arterial pressures. After the subject releases the high intrathoracic pressure, there are about 5 to 10 seconds during which the systolic pressure rises and falls. The blood pressure cuff is pressurized to 160 mm. Hg. Assume that a simultaneous direct arterial pressure reveals the actual highest systolic overshoot to be 140 mm. Hg 2 seconds after the breath is released. It will be impulsible to obtain this value by indirect methods, following the American Heart Association recommendation. The pressure cuff must be reduced from 160 to 140 before the systolic pressure is identified. This is a drop of 20 mm. Hg. The pressure cuff is reduced at a rate of 3 mm. Hg per second. In 7 seconds the cuff pressure will be approximately 140 mm. Hg. By then the actual arterial pressure is less than its maximum. This is the main experimental error, and it is of sufficient magnitude to give a narrow group spread.

Interpretation:

The coinvestigators did not interpret the test because of the significant experimental error.

Cold Pressor Test (see figure 6.3):

Equipment:

- a. Electric clock with second hand
- b. Sphygmomanometer
- c. Stethoscope

d. Basin about 4-1/2 to 5 inches deep and 12 inches in diameter filled with ice water, average temperature of 4° C.

Technique:

The subject did not receive any pretest briefing. Three resting blood pressures and pulses were taken at 1-minute intervals, while the subject relaxed in a chair with his bare feet on the floor. Room temperature was 68° to 74° F. Immediately following the third resting blood pressure, an assistant brought the prepared pan of ice water and placed it in front of the subject. The investigator then directed the subject to plunge both of his feet into the ice water, and leave them there for 7 minutes. The subject was advised that this was the only opportunity he would have to perform this test and that he would be expected to keep his feet in the ice water the entire time. Immediately after plunging the feet, the clock was started. A blood pressure and pulse were recorded each minute during the test. If the subject removed his feet from the water before the elapse of 7 minutes, it was so recorded and the experiment was terminated. At the end of 7 minutes, or sooner if there was a premature withdrawal, the subject placed his feet on a dry towel. Three posttest blood pressures and pulses were then recorded. The subject was instructed not to discuss this test with any of the other candidates.

WADC TR 59-505

Figure 6.3. Cold Pressor Test

WADC TR 59-505

Example Record*:

	Blood Pressure	Pulse
Resting		
1 min.	112/64	-70
2 min.	116/68	70
3 min	118/70	70
Average	115/67	70
'eet in Ice Water		
1 min.	140/70	108
2 min.	142/76	108
min.	136/84	74
min.	132/76	80
min.	138/86	- 80
min.	148/86	76
min.	140/84	84
Average	139/80	87
eet out of Ice Water		
l min.	128/76	76
tmin.	128/76	72
min.	128/76	76
Average ,	128/76	75

Scoring:

It was desirable to reduce these many bits of raw data into a final, meaningful, numerical score. To achieve this data reduction the investigators jointly agreed upon the following:

* This subject was quiet and cooperative and offered no complaints.

WADC TR 59-505

a. The average resting pulse is subtracted from the average pulse during immersion in the cold water (termed p_1). Using the example:

 $p_1 = 87 - 70 = 17$

b. The average resting pulse is subtracted from the average posttest pulse (termed p_2). Using the example:

 $p_{2} = 75 - 70 = 5$

c. The sum of $p_1 + p_2 = P$. Thus,

17 + 5 = 22

d. The same method was adapted to reduce systolic pressures to simple numbers. The average pretest systolic pressure subtracted from the average test systolic pressure is termed s_1 . The average pretest systolic pressure subtracted from the average posttest systolic pressure is termed s_2 . The sum of $s_1 + s_2 = S$. Thus,

 $s_1 = 139 - 115 = 24$ $s_2 = 128 - 115 = 13$ $8 = s_1 + s_2 = 37$

e. The same method was also used for the diastolic pressures. The difference between the test and resting average diastolic pressures is termed d_1 . The difference between the posttest and resting average diastolic pressures is termed d_2 . The sum of $d_1 + d_2 = D$. Thus,

d₁ = 80 - 67 = 13 d₂ = 76 - 67 = 9 D = 13 - 9 = 22

f. The final score, the sum of P + S + D, is termed Q. Thus,

Q = 22 + 37 + 22Q = 81

Results:

Three subjects withdrew their feet from the ice water before the end of the test. The longest immersion time of those three was 45 seconds. The mean Q value was 37. The σ was 37. There were no episodes of hypotension, presyncope, or syncope.

Narrative Example Performances:

Two separate narrative summaries are as follows:

a. This subject complained bitterly when presented with this test and stated that he was sure he would be unable to keep his feet in the water. When he was finally convinced that it was necessary, he placed his feet into the water, complaining bitterly all of the time. At the end of 15 seconds, he complained of severe pain and withdrew his feet. He made a halfhearted second try,

WADC TR 59-505

but finally refused any further attempt. His resting blood pressure was 119/60, his resting pulse, 85. Immediately after placing his feet into the water the first time, his blood pressure rose to 150/110.

b. This subject performed the test with very little comment and very little apprehension. However, his blood pressure and pulse rose markedly during the time his feet were in the water and he sustained a systolic elevation even after his feet were removed from the water. His score was 91.

Interpretation:

The hypertension and tachycardia were intentionally not interpreted, so that they could be used in the correlation study. The coinvestigators interpreted withdrawal of the feet from the ice water before the end of the test as a reflection of poor motivation.

Treadmill Test (see figure 6.4):

Equipment:

a. Treadmill with belt speed of 91.5 meters/minute capable of being elevated to a maximum angle of 25°.

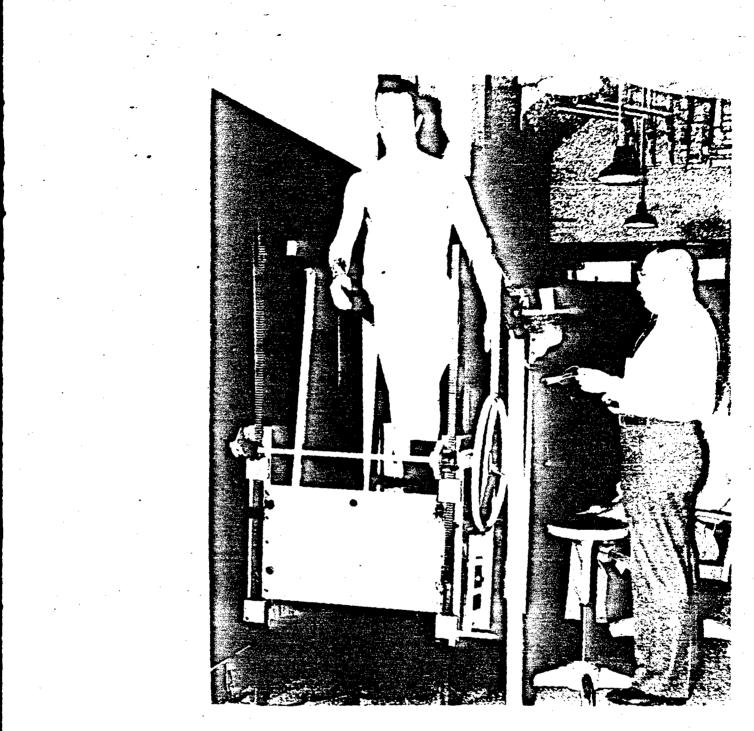
b. Sphygmomanometer

c. Stethoscope

Technique:

Subject was dressed in lower trunk cotton underwear, socks, and tennis shoes. Subject sat at rest on the treadmill while 3 resting blood pressures and pulses were recorded at 1-minute intervals. This was accomplished by securely placing a BP cuff and stethoscope on the left arm and an additional stethoscope on the precordial area. The subject then stood astride the leather treadmill belt and received this briefing: "The treadmill motor will be switched on. It will run at a constant speed of 91 meters/minute (3.4 miles/hour). At the end of each minute, the angle of inclination of the treadmill will be increased to 0.9° (1% of 90°), starting from the horizontal. Thus, at the end of 1 minute the treadmill will be raised from 0 (horizontal) to a 0.9° angle. At the end of 10 minutes, it will be raised from a 7.2° angle to an 8.1° angle. The test will terminate for any of the following reasons:

a. If you are experiencing any unbearable discomfort


Chine and Station

b. When your pulse reaches 180 beats/minute and remains there at least 1 minute

c. At the discretion of the physician

You may not hold onto the support rails unless you terminate." The treadmill was then started, and, when the subject walked on it without holding the side supports, the test commenced.

WADC TR 59-505

WADC TR 59-595

Figure 6.4. Trea incli test

Example Record*:

	Blood Pressure	Pulse
esting		
1 min.	98/66	112
2 min.	94/60	110
3 min.	96/66	108
Moving Tread	mill	
1 min.	120/80	120
2 min.	110/70	152
3 min.	140/80	160
1 min.	120/80	164
5 min.	128/90	172
6 min.	126/90	176
7 min.	140/80	180
8 min.	140/80	186
9 min.	150/80	194
fter Test	·····	
1 min.	140/50	168
2 min.	116/60	156
3 min.	118/58	142

Scoring:

The coinvestigators reasoned that a lower than average test pulse reflected better than average physical fitness. To arrive at a final score, the number of minutes (M), during which the subject's pulse did not exceed 180, was divided by the average test pulse (P), excluding pulses above

• This subject volunteered to perform longer, stating he felt quite well. This record was included because it is unusual. The subject has had a high resting pulse for years. This may explain his low time score and identifies a weakness in the present endpoint and scoring system.

WADC TR 59-505

180. The quotient multiplied by 1000 gave S, the final treadmill test score. Thus,

$$\mathbf{S} = \frac{\mathbf{M}}{\mathbf{p}} \times 1000$$

Using the above example:

Thus, the final score would be:

$$5 = \frac{7 \times 1000}{161} = 43$$

Results:

The mean final score was 75. The σ was 15. One subject was 2.2 σ below the mean. Another subject was 2.4 σ above the mean. All others were within 2 σ of the mean.

Narrative Example Performances:

a. The subject performed the test cooperatively, but was very clumsy. He had a wide, "stomping" gait on the treadmill. His final score was 85.

b. This subject established the record for the candidates. He performed for a total of 16 minutes, attaining a score of 110.

Interpretation:

The coinvestigators interpreted a greater than average test time and a less than average test pulse as a reflection that the subject was in better than average physical fitness. They also interpreted a less than average test time and a more than average test pulse as a reflection that the subject was in poorer than average physical condition.

Partial Pressure Suit Test (see figure 6.5):

Introductory Remarks:

The MC-1 partial pressure suit, when worn in the low-pressure chamber at 42 mm. Hg (65,000 feet barometric equivalent) for 1 hour, presents definite physiological and psychological stresses. The suit only has a small anterior chest and abdominal bladder. This bladder does not offer adequate counterpressurization on the outside of the entire torso to equalize the high intrathoracic pressure. In effect, pressure breathing is necessary.

The most important physiological response to the MC-1 pressure suit test is the alarming frequency of sudden presyncope. The pattern leading up to syncope is fairly uniform. The subject is exposed to a simulated altitude of 65,000 feet. Suddenly he breaks into moderate diaphoresis on his entire body. He discerns this easily on his arms and legs where the sweat evaporates through permeable fabric. The effect is a cold sensation such as evaporating ether. Concomitantly, there is a definite hypotension and a relative bradycardia. True bradycardia implies the pulse is below 60 beats/minute. However, in the MC-1 suit during the test, a sudden drop in pulse from 150 to 75 (figure 6.6) is a relative bradycardia. The subject becomes ghostly pale and often states that his field of vision is constricting and that he is "graying-out." If another few seconds are inadvertently allowed to A STATE OF STATES OF STATES

WADC TR 59-505

T.

ŝ.

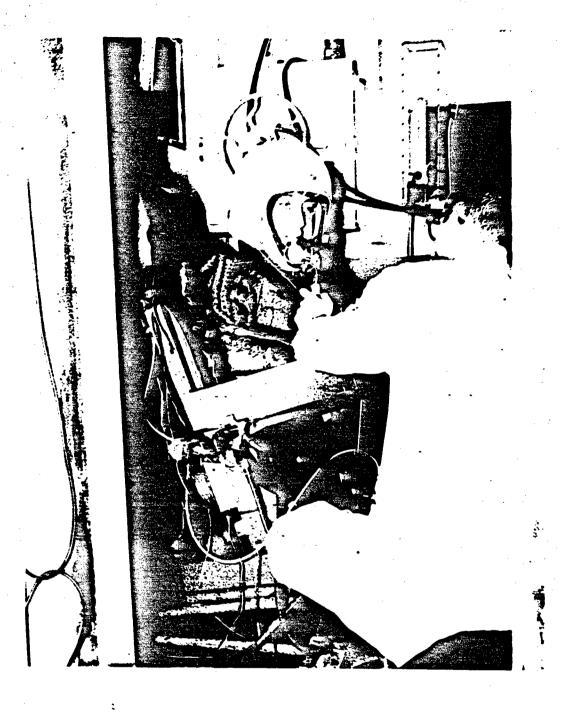
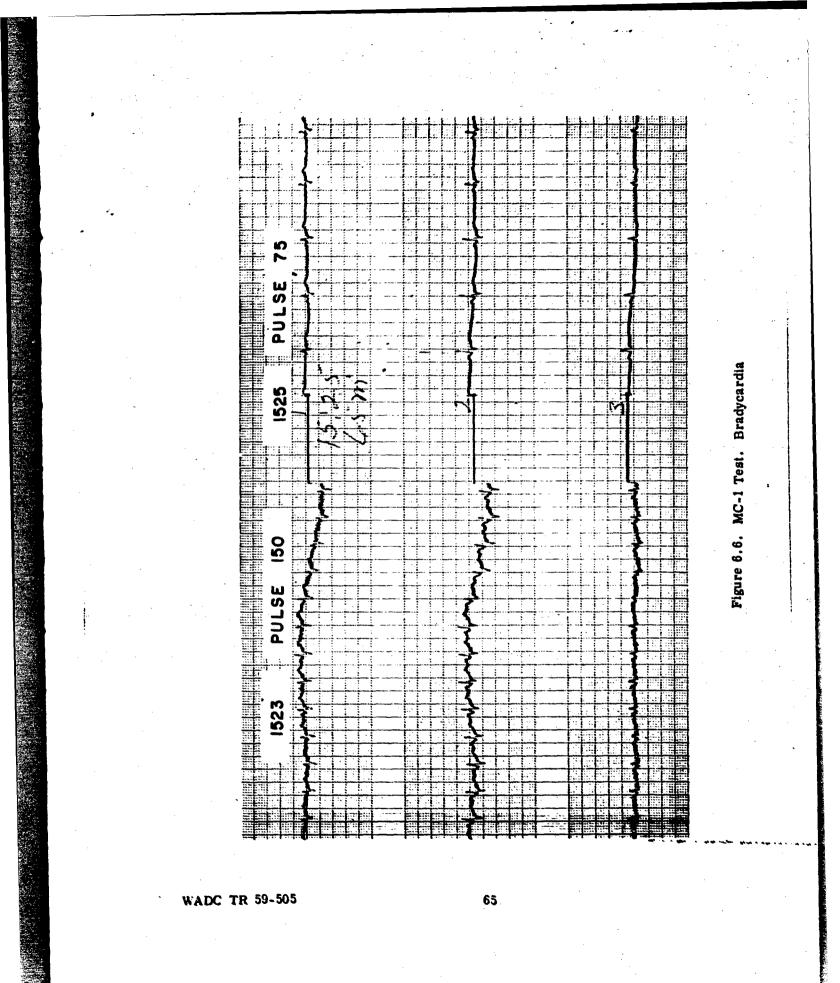



Figure 6.5. MC-1 Test. Checking Equipment Prior to Test

WADC TR 59-505

elapse, the subject becomes unconscious and slumps forward in his ineffectively counterpressurizing suit. Emergency repressurization of the chamber from 65,000 to 40,000 feet will deflate the suit in 4 to 6 seconds. Return to consciousness occurs in another 4 to 6 seconds. The pallor, clammy skin, hypotension, and bradycardia often persist for 1 to 2 hours after cessation of the test. The lapse of time from the first symptoms until syncope varies from a few seconds to 2 minutes. As soon as the first symptoms appear, the test is immediately terminated to avoid unconsciousness.

The following physiological or psychological reasons for termination in 56 attempted MC-1 suit tests were observed: unconsciousness, 2; presyncope, 5; tachycardia greater than 160 beats/ minute, 3; claustrophobia, 1; hyperventilation with apprehension, 2; and inability to breathe adequately in suit, 1. Thus, 14 (25%) of 56 attempted tests were terminated for physiological or psychological reasons.

Equipment:

- a. Low-pressure chamber, capable of attaining 42 mm. Hg pressure
- b. MC-1 partial pressure suit ensemble
- c. MA-2 helmet, pressure gloves, regulator, oxygen
- d. Extremity EKG leads
- e. Oscilloscope
- f. Direct write-out EKG machine

g. Emergency equipment: oxygen, resuscitator, bronchoscope, laryngoscope, tracheal catheters, thoracotomy set, heart defibrillator, and pace-maker machine; appropriate electrolyte solutions to stimulate cardiac muscle

- h. Floodlights in chamber
- i. Movie camera

Technique:

Starting at 0800 or 1300 hours the subject dressed in long underwear, personal socks, and shoes, sat in a comfortable chair, and denitrogenated on 100% oxygen for 2 hours. He wore an MA-2 helmet and facepiece, with 8 mm. Hg positive pressure delivered from an MQ-1 console. As soon as he began denitrogenating he was fitted into an MC-1 partial pressure suit. A choice of suit size was made from the subject's stated height and weight. When dressed in the suit, the lacings were appropriately adjusted and a final assessment of suit fit made by the physician. The same physician conducted all of these MC-1 tests. In two cases tailoring of the arms or legs was accomplished. The MA-2 helmets were individually fitted by tightening the lacings. Each subject was fitted with the appropriate size of pressure gloves. The feet were not counterpressurized. Extremity EKG leads were applied to each subject. Blood pressure recordings were not incorporated because of the technical unreliability of the present strain gauge under a pressure suit. During the final 30 minutes of denitrogenation the subject experienced a battery of tests:

a. He performed several written tests which were designed to measure a variety of psychomotor functions.

b. Following the psychological tests, 15 cc. of venous blood was drawn from the subject. The blood was heparinized and centrifuged. The plasma sample was labeled with a code number and frozen.*

c. The subject then attempted to empty his bladder and, if successful, a sample of the urine was placed into a polyethylene container with a preservative.**

d. A special analysis of the pre- and post-MC-1 urine samples for 3-methoxy-4-hydroxymandelic acid was accomplished on five of the NASA candidates to determine if there was a correlation between it and corticosteroid and catacholamine. This latter analysis was carried out by Lt. Larry Berman.

e. The subject then entered the low-pressure chamber while breathing from a portable O_2 tank. The following checks were made:

(1) Switch to chamber oxygen supply.

(2) Connect bladder and capstan and helmet hoses to regulator hoses.

(3) Connect and check intercommunication.

(4) Connect and check all EKG leads; check for clarity of EKG write-out.

(5) Inflate the pressure suit to insure appropriate pressures are being delivered to the subject in the suit.

- (6) Photograph the subject.
- (7) Check the suit and helmet ensemble for final time.
- (8) Close the subject chamber.
- f. The inside observer assumed his place in the lock.

Prior to this time there had been no detailed briefing of the subject by the physician. The physician sat at a viewing window to the left side of the subject. Before he spoke to the subject, he obtained 3 resting pulses at 1-minute intervals. The exact time of denitrogenation was recorded, as well as details of previous pressure suit experience. When the subject indicated he was prepared, the chamber was evacuated to 40,000 feet. The subject was cautioned to advise the crew if gas pains or discomfort developed. At 40,000 feet, each subject received the following briefing:

"For this test I will assume that you have never had any previous training in pressure suits. Following this briefing and when you say so we are going to take you to 45,000 feet. EKG and pulse recordings will be taken. When you indicate you are prepared, we'll go to 55,000 feet, take EKG and pulse recordings, and then, when you indicate, we'll go up to 65,000 feet. When you reach 65,000, the test will start and continue for 60 minutes unless medically contraindicated.

"Tell me if you have any of the following sensations while being exposed to 65,000 feet barometric equivalent:

* These frozen samples were analyzed for plasma corticosteroids by Dr. Henry B. Hale and his staff at the Department of Physiology, School of Aviation Medicine, Randolph AFB, Texas.

** Pre- and post-MC-1 urine samples were mailed to Bio-Science Laboratories, Los Angeles, California. The samples were analyzed for urinary catacholamines.

WADC TR 59-505

20

a. Breaking out into perspiration (This sudden perspiration will not feel like a regular sweat. The evaporation will feel like the coolness when ether evaporates.)

- b. Nausea
- c. Diminishing vision (like barrel vision) or graying out
- d. Faintness, lightheadedness, or dizziness
- e. Breathing trouble or not able to take a satisfactory breath

"The chamber crew can usually determine all of these situations long before you. This briefing is intended to insure you of the widest possible margin of safety. While you are at 65,000 feet, we recommend that you keep your movements to a minimum. If you desire to move, you will find that it is a considerable effort. Don't feel that you have to keep looking up. We can see your face even when you look down. Talking will fatigue you and speed your pulse rate. At the end of 10 minutes at 65,000 feet you will read a speech. You may find it a bit of an effort. Keep your talking to a minimum except as indicated. When you are asked a question, do not hesitate or delay the answer. You may nod your head or stick up your thumb in lieu of a verbal reply. If you do not give a prompt reply, I will assume you are in trouble and order an emergency chamber descent.

"Do not do a Valsalva maneuver when passing gas rectally or orally as this frequently causes dizziness and a pulse rise. Relax and the gas will pass easily. When you take in a breath and hold it in your chest, do not close your vocal cords. This is effecting a Valsalva maneuver, too. Keep your eyes open. If you close them, we will immediately repressurize the chamber. It takes only 4 to 7 seconds to bring the chamber to a safe altitude, so you need not be concerned about your safety. Do you have any questions?"

When all questions had been answered and if there was no gas discomfort, the chamber was evacuated to 45,000 feet. At 45,000 feet the capstan pressure must be at least 2.9 p.s.i. and helmet pressure at least 37 mm. Hg. Once the physician established that the subject was breathing without undue difficulty, and that there were no contraindications, he then directed the chamber to be evacuated to 55,000 feet. At this altitude the capstan pressure must be at least 7.0 p.s.i. and helmet pressure at least 72 mm. Hg. After the subject became accustomed to the difficult breathing charaoteristics and when the subject approved, the chamber was evacuated to 65,000 feet and the 1-hour test commenced. At 65,000 feet the minimum safe capstan pressure is 9.5 p.s.i. and the minimum bladder pressure is 99 mm. Hg. During all of the 60 minutes at 65,000 feet the subject was very cautiously observed by three experienced persons: the physician, the chamber operator, and the inside observer (who was thoroughly briefed in emergency procedures and was at an intermediate altitude of 25,000 feet). The pulse and suit pressures and EKG were routinely recorded at 5-minute intervals. A battery of floodlamps were turned on at 2- to 5-minute intervals to assess the color of the subject's face.

Causes for termination of the test were as follows:

a. If the subject requested termination. Experience has shown that psychological causes are: anxiety, fear, apprehension, and claustrophobia.

b. If the physician ascertained that the subject's well-being was in danger. This includes the following: unconsciousness, presyncope, tachycardia in excess of 160, gas pains, or the bends.

c. Any malfunction of the suit or the seat-kit assembly* or other strategic mechanical

failure

• The seat-kit assembly contains the suit regulators and hoses.

WADC TR 59-505

After the elapse of 10 minutes at 65,000 feet, all subjects read a specially prepared speech entitled, "My Grandfather." This was recorded on tape for analysis of speech intelligibility in a pressure suit. Unless an emergency developed, the subject remained at 65,000 feet for 60 minutes. He was then given the opportunity to briefly experience pressure suit protection at 100,000 feet. If he desired, the chamber was evacuated to 100,000 feet and immediately repressurized to sea level. Taking the subjects to 100,000 feet required 1 to 2 minutes and was not a part of the test. It was intended for familiarization and experience only.

Procedure after the test was as follows:

'a. Subject's helmet and gloves were removed and the pressure suit was turned down at the waist for comfort.

b. A 15-cc. venous blood sample was taken from the nonwriting arm, and the plasma was frozen (vide supra).

c. A replat psychological written test was performed.

d. A urine specimen for catacholamine and 3-methoxy-4-hydroxymandelic acid was taken.

The above procedure completed the MC-1 test. The entire profile required an average of 4 hours.*

Scoring:

Several rules were established in order to score each subject's performance as fairly as possible:

a. Any subject who terminated the test for psychological reasons automatically would receive the poorest possible rating.

b. If a test was terminated for insolvable mechanical reasons, and if it was impossible to reschedule the subject, then the subject would be given the full 60 minutes credit.

c. When a subject developed presyncope or syncope, and the test was terminated, the scoring would apply only to that part of the test which occurred before the signs and symptoms of presyncope.

d. When a subject developed a tachycardia sufficient to terminate the test (160 beats/min. or greater), the scoring would apply only to that part of the test which occurred before the tachycardia reached 160/min.

Scoring utilized the pulse response of the subject. The average of three pulses taken prior to chamber ascent was termed P_r . The average of all pulses taken while subject was at 65,000 feet (but not including those pulses during presyncope, syncope, or tachycardia, 160 beats/min.) was termed P_t . The final MC-1 score was termed S_{mc-1} and represented the difference between P_r and P_t .

Using the following example: $P_r = 83$ and $P_s = 144$

Therefore, the final score would be:

 $S_{mc-1} = 144 - 83 = 61$

Then the subject was provided with a shower and 2 ounces of whiskey. The whiskey was not consumed immediately if other tests were planned within 6 hours.

WADC TR 59-505

Example Record*:

fime	Chamber Pressure [#] (mm.Hg)	Duration 65,000 Ft. (minutes)	Pulse (per minute)	Bladder Pressure	Capstan . Pressure	Remarks
1522	730		78	6	0	· · · · · · · · · · · · · · · · · · ·
1523	730		88	e 4	. 0	· • •
1524	730		83	6	Ŭ.	Denitrogenation - 2hr. 20 minutes
1527	141		88	. 8	0	No previous pressure suit experience
1533	110		92	34	3.0	Not experiencing difficulty
1534	68		104	78	8.0	Color and EKG normal
1537	42	Start	132	104	11.0	Color and EKG normal except
1542	42	5	. 128	102	11.0	for tachycardia;
1547	42	10	132	100	11.0	Read "My Grand- father" speech and
1552	42	15	144	102	11.0	pulse rose to 144 beats/min.; advised
1557	42	20	144	104	11.0	subject to keep activity and talking
1602	42	25	148	100	11.0	to minimum. Moderate suboccipita ache due to belmet
1607	42	30	152	104	11.5	pressure Color and EKG are unchanged since
1612	42	35	152	106	11.5	start, except for rising tachycardia.
1617	42	40	150	104	11.0	Subject is obviously experiencing helme
1622	42	45	150	106	11.0	discomfort but not complaining.
1627	42	50	152	104	11.0	
1632	42	55	150	102	11.0	Subject is becoming very pale.
1637	42	60	144	104	11.0	Helmet ache is sever but subject desires to finish test.
1643	730		80	6	0	Monitor unwilling to let subject ascend to 100,000 feet

730 mm. Hg is equivalent to ground level 141 mm. Hg is equivalent to 40,000 feet altitude 110 mm. Hg is equivalent to 45,000 feet altitude 68 mm. Hg is equivalent to 55,000 feet altitude 42 mm. Hg is equivalent to 65,000 feet altitude

The medical monitor was impressed with this subject's demonstration of motivation.

WADC TR 59-505

Results:

2. Thirty-one MC-1 tests were attempted. Twenty-two subjects successfully completed the 1 hour at 65,000 feet. The causes for the nine terminations were:

(1)	Presyncope (relative bradycardia, pallor, faintness)	4 subjects
(2)	Psychological termination	2 subjects
(3)	Tachycardia	1 subject
(4)	Intercommunication failure	1 subject
(5)	Unable to fit subject to protect neck area properly	1 subject

b. The mean resting pulse was 82 beats/minute. The mean test pulse (not including those during presyncope or tachycardia of 160) was 109 beats/minute. The mean S_{mc-1} was 27. The or for the S_{mc-1} was 16. Two subjects had scores which were greater than 2 or above the mean. No subject had a score of less than the mean minus 2 or.

Narrative Example Performances:

a. Subject had not had previous pressure suit experience, but performed extremely well by rapidly adapting to the stressful situation. He responded quickly with answers and was so much at home in the threatening situation that he experimented and discussed in detail various breathing cycles that he was performing as well as various motions with his arms and legs to test the mobility of the suit.

b. The subject had had previous experience in the MC-3 pressure suit to 65,000 feet barometric equivalent for 15 minutes. The subject's first attempt at this pressure suit test aborted because the subject had intense gastric distress which he was unable to relieve. It was the observer's impression that the subject tried to be fully cooperative in attempting to relieve this gas. The subject spent an hour attempting to relieve this distress. He was unsuccessful and the run was finally aborted by the physician. The remainder of that day was spent performing other physiological tests.

いたやきの経験を行いた場所である。

Two days later the subject again denitrogenated for 2 hours and as the blood sample was drawn from his arm, he remarked frequently and bitterly about having to submit to blood sampling. He was moderately abusive to the medical observers who were drawing the blood samples and complained with equal bitterness to the airmen that the MC-1 was a poor and inadequate pressure suit. Everyone who worked with him that morning was impressed that this subject was antagonistic and moderately uncooperative. The chamber was evacuated by the carefully programmed profile to 65,000 feet barometric equivalent. The subject experienced hyperventilation and great difficulty in breathing adequately. The subject turned his thumb down, indicating he wished to be returned to a 40,000-foot altitude. This was immediately accomplished. The total duration of this test at 65,000 feet was 2 minutes, 50 seconds. The subject agreed to attempt the return to 65,000 feet. This was accomplished and this time he remained 2 minutes, 12 seconds. Again he indicated to the physician that he wished to return to sea level, stating: "I'm sorry; I just can't hack it. I guess I was hyperventilating." The physician in charge was impressed that this subject lacked motivation during this test and was not making an effort to learn to breathe in the MC-1 suit. There were no physiological reasons for termination of the test.

Interpretation:

a. The subjects who terminated the test for psychological reasons were not well motivated, and/or were not able to conquer their apprehensions. A candidate who terminates for psychological reasons is not, under any circumstances, suitable for recommendation by the physical fitness investigators.

WADC TR 59-505

b. The subjects who had an average test pulse rise less than the group average test pulse rise were in better than average physical fitness. The subjects who had an average test pulse rise greater than the group average test pulse rise were in poorer than average physical fitness.

c. No significance was attached to the occurrence of presyncope or tachycardia. It was interpreted as representing a normal variation in physiological response to the stress of severe positive pressure breathing. Dermksian^{6.8} has reported syncope, presyncope, and cardiac arrhythmias due to breath holding in normal, healthy pilots. The bradycardia is possibly due to stimulation of the efferent cardiac decelerator nerves by lung stretch receptors. It is reasonable to suspect that atropine might prevent further bradycardias, as Dermksian reported.

Tilt Table Test (see figure 6.7):

Equipment:

a. Tilt table capable of rotating from the horizontal to a 65° inclination.

b. Harvard step platform

c. Clock

d. Metronome

e. Sphygmomanometer

f. Stethoscope

Technique:

Subject wore long underwear on the lower torso and was fitted with a blood pressure cuff and stethoscope. Three sitting blood pressures and pulses were recorded at 1-minute intervals. Then the subject performed the Harvard step test for 3 minutes as described (vide supra). Immediately upon completion of the exercise he stood upon the tilt table with his feet on a fixed platform, previously adjusted to the subject's comfort (figure 6.7). The head of the tilt table had been set at 65° from horizontal. Subject was then instructed to relax, not to move his arms, legs, or hips, and to avoid unnecessary talking. During each minute of the 25 minutes with the tilt table at 65° the pulse and blood pressure were recorded. If the subject was nauseated or pale it was noted. When syncope or vomiting was imminent, the test was terminated. If the subject did not follow directions this was noted. Following 25 minutes of standing on the tilt table at 65° the subject was returned to the horizontal. Three final blood pressures and pulses were recorded at 1-minute intervals.

Example Record:

During the following example test, the subject was very cooperative. He experienced no nausea and no pallor or marked sweating. His average pretest blood pressure was 116/70 and his average test pulse was 138. The test systolic was less than the average resting systolic by >6 mm. Hg during minutes 14, 15, 18, 21, 22, 23, 24, and 25. The test diastolic was never less than the average resting diastolic by >6 mm. Hg. The total number of minutes that the systolic and/or diastolic was less than resting blood pressures was 8 minutes.

WADC TR 59-505

Figure 6.7. Tilt Table Test

WADC TR 59-505

	Blood Pressure	Pulse
esting		_
1 min.	120/70	100
2 min.	114/70	100
3 min.	114/70	96
fter Exercise		· · · ·
1 min. ¹	. 158/70	200
2 min.	159/70	196
3 min.	138/80	160
4 min.	134/80	140
5 min.	134/80	124
6 min.	128/80	132
7 min.	124/76	136
3 min.	124/80	124
min.	110/76	124
) min.	120/80	136
min.	120/84	124
2 min.	118/80	132
min.	110/84	140
min.	100/80	132
5 min.	104/80	140
6 min.	116/80	128
7 min.	110/84	136
min.	108/88	128
9 min.	110/86	132
0 min.	112/84	140
1 min.	106/80	136
min.	102/80	132
3 min.	100/82	128
4 min.	100/80	128
5 min.	98/84	132
bject Horizontal		
1 min.	110/78	112
2 min.	110/70	- 112
3 min.	110/78	100

Scoring:

This arbitrary scoring system was designed to render a low final score for subjects with bradycardia, hypotension, and syncope. A higher than average resting blood pressure and tachycardia produced a high score. A formula was developed to reflect the change of pulse and blood pressure. The average pulse value was divided by a constant (4) to keep the final score below 100.

The average pulse during the test was termed P_t. The number of minutes that the systolic and/or diastolic blood pressure was significantly lower than the average resting systolic and/or

WADC TR 59-505

diastolic blood pressures was termed M. (If any test systolic pressure was 6 mm. Hg or more less than the resting systolic pressure, or if any test diastolic pressure was 6 mm. Hg or more less than the resting diastolic pressure, this was considered significantly lower than the average resting blood pressure.) The final score was termed S. The formula used for final scoring was:

$$S = 25 - M + \frac{P_t}{4}$$

Using the above example:

$$\frac{P_t}{4} = 35$$

Therefore, the final score would be:

S = 25 - 8 + 35 = 52

Results:

Thirty-one tilt table tests were administered. Twenty-four were uneventful. (In this sense, uneventful means that the subject performed the test properly and/or that the subject's medical signs and symptoms were not of sufficient magnitude to terminate the test.) The other seven tests were considered eventful due to the following:

> (1) Presyncope (hypotension, pallor, lightheadedness) causing termination of test

6 subjects

(2) Uncooperative subject; did not follow directions 1 subject

Two of the subjects who demonstrated presyncope were ill prior to the test. They were inadvertently tested during their illnesses. Since their presyncope might well have been precipitated by their illnesses, they were retested at another time when they were well. Both performed uneventfully when retested. A third subject who was not ill, and who developed presyncope, was also retested at his request and performed uneventfully during retesting. Therefore, there were three remaining subjects who had developed presyncope but were not afforded a chance to attempt to establish a higher score.

Interpretation:

There were inconsistencies in the administration of this test. Three subjects experienced presyncope. They were retested and performed uneventfully. It would not be equitable to compute a score based on the tilt table response during illness. It also would not be equitable to score the remainder of the healthy population, unless they were also retested and given an equal chance to attempt to establish a higher score.

WADC TR 59-505

METHOD OF RANKING CANDIDATES

The candidates who aborted the MC-1 partial pressure suit test or the cold pressor test for psychological reasons were automatically ranked lowest. The remaining candidates were ranked by an analysis of their final scores on the Harvard step test, the Flack test, the treadmill test, and the MC-1 partial pressure suit test. Table 6.1 presents all of the performance scores of the candidates on the physical fitness tests.

Scoring Technique:

1. The mean score was subtracted from the score of the candidate.

2. The standard deviation was determined for each of the tests.

3. Then it was determined how greatly the subject's score differed from the mean. This difference was expressed as σ from the mean for each subject.

4. Each subject's score on each of the four tests was expressed as σ from the mean.

5. The algebraic sum of σ from the mean on these four tests was the final physical fitness score of the candidates.

The following are examples of the scoring technique:

Example			e Subtracted ect' s Score	from	The Subje	Physical			
Subject	Harvard	Flack	Treadmill	MC-1*	Harvard	Flack	Treadmill	MC-1	Fitness Score
K	+11.1	+104.8	+34.6	+23.6	+2.10	+3.34	+2.37	+1.47	+9.28
ÂA .	+ 1.4	- 1.2	+19.6	- 13.4	+0.26	-0.04	+1.34	-0.84	+0.72
Q.	- 13.8	- 24.2	- 21.4	- 0.4	- 2.60	-0.77	-1.47	-0.30	-4.87
	Flack Tread	ard Mean Mean Imill Me Mean	= 66.2		Flac	ıdmill o	= 5.3 = 31.3 = 14.6 = 16.0	-	

Table 6.2 is a complete list of the scores of the candidates. Table 6.3 shows the final candidate ranking.

Interpretation:

The candidates who had higher total scores and are at the top of the ranking list are in better physical fitness than those candidates who had lower total scores and are at the bottom of the list. The candidates in a better state of physical fitness are more desirable for Project Mercury.

 The mean score was subtracted from the subject's score, but + and - were reversed as low pulse change is more desirable.

TABLE 6.1

PERFORMANCE SCORES OF CANDIDATES ON PHYSICAL FITNESS TESTS

	Aller Mc-1	No record	liese that ?	**	No record		*	.	r. •	No reard	LATE PLAN 2	•	- q .	•	-No record	Leve than 2		-		• • •	~	Lurs than 2		2 unul 41.VI	2 nedi.asvi	*		~	14	1.4
11 N	Before MC+	¢	Less than 2	-	n1	• 9 •	-	- , -	in the second second	Leves than 2	Lara than 4		Low than d	e unul saort	Lens than 2	-1	-,			Norrecord	-	Love than 2	-1	No Licord	•••	7	-	*7	1	1 1. 7
mis planta	Alter MC-1	16.6	7.1	17.4	Nu record	* :		• •		-	16.1	2			17.1		11.1				16.2	18,0	rord 1 Jak	ž	ź	26.8	\$ * P	10, 8	15.0	1.4
in A k./100 mb. planna	Briory MC-1	13.4	10, 5		12 PN	11.6					11.2	đ		-	-	- *		a . ~			11.8	10. 8	- <u>-</u> <u>-</u> <u>-</u>	15.6		17. 3	14,0	+	12.8	, r.1
1 I I	Final Score	11		=	Ţ	09	32	z :	5.3	. 7		ź	10 - 1 10 - 1	- 1	1	7	ž	ž	; :	52	23	02	2	3 3	ž	- 14	÷ 2.6		75, 4	14.6
<u>Trui</u>	Final Score	2	3	4	- 25	Ŧ	7	ç :	÷ 1	: -	96	\$	£	7 :	17	:3	\$	ş	\$		5	3	2:			5	-	ŝ	47. B	6 '2
륑	4 - 1	+9 1	23	2	2	1	1844	•	5	19.	-	-	5	÷.,	- ě	22	3	Ξ	(664 ÷	¥ 2	12	95	4	2 9		÷.	12+	12	26.6	16.0
Ten T	Final Score	•	001	55	36	7	100	ę :	; :		5	-	R S	27	54	: 5	Ŧ	20	62		12	001	99	•	÷.	-	67	. 3	11	16. N
Overshout	15 - 25	-	+	30	-	-		=			~3	2				: ~:	=	9	<u>s</u> .	•	:	~1	ver c		, vi	_	3	2	4.9	6, 3
40 mm. Hg	=	. 0 .61	90.06	70.0	ŧ. 0	65.0	0.11	52.0	¥1.0	6 m 2	111.0	91.0	52, 5			42.0	49.0	12.0	15.0	0,00	60,0	61.0	65,0	46.0	94.0	53.0	71.0	139.0	66.2	. 11. 1
Ē	<u>p × 150</u>	49, 0 .	49.6	49.8	47.0	50,0	54.4	55.9	62,1	44.4	61,9	1.14	50,1	1.15	54.5	0.61	54.0	54.0	52.7		42.1	4% 5	59.6		57,6	51.7	54.0	58.7	52.8	۶, ا
Number		142	152	152	115	144	148	Ĩ	<u>.</u>	150	120	144	150	5		=	150	112	1	150	9	150	E	23	3	11	71	155		landard Drviation
	Subject	<	×.	υ	a	2	54	U	z .		, ×	-1	X	x (3 2	. a	34	•	H i	> >	3	×	بر			20	DD	EE.	Mean	Standard Deviati

WADC TR 59-505

TABLE 6.2

FINAL SCORE TABULATION OF PHYSICAL FITNESS TESTS

Subject	Harvard	Flack	Treadmill	MC-1	Total
A	-0.72	+0.73	-0.30	+0.66	+0.37
B*					
С	-0.56	+0.12	+0.11	+0.72	+0.39
D*	-	•	•		
E	-0.53	-0.04	+0.31	+0.54	+0.28
F*					
G	+0.59	-0.45	+0.86	+1.41	+2.41
H	+1.75	+0.47	-0.16	-0.03	+2.03
I	-0.49	-1.27	-0.71	-0.28	- 2.75
J	-0.74	0.00	-0.10	- 2.15	- 2.99
K	+2.10	+3.34	+2.37	+1.47	+ 9 28
L	0.00	+0.79	+0.66	-0.28	-+1.17
M	-0.51	-0.44	-1.19	-0.09	- 2 .23
N*					•
0	-0.51	-1.01	-1.19	+1.23	-1.48
· P ·	-0.30	+0.92	+0.66	-0.15	+1.13
Q	- 2.60	-0.77	-1.47	-0.03	-4.87
R	+0.60	-0.55	+0.52	-0.34	_ +0.23
S	+0.60	-1.09	+0.93	+0.79	+1.23
Т	0.00	-1.00	+1.27	- 2.46	- 2.19
U	-0.70		-0.98	-0.96	- 2.84
v	+0.40	+0.86	+0.25	+0.91	+2.42
W	-1.90	-0.20	- 1.26	-0.77	-4.13
X	-0.62	-0.17	-0.37	-1.46	- 2.62
Y	+1.28	-0.04	-0.37	+0.72	+1.59
2	+1.43	-0.58	-1.05	+1.04	+0.84
AA	+0.26	-0.04	+1.34	-0.84	+0.72
BB	+0.90	+0.89	+0.72	+1.47	+3.98
CC	-0.20	-0.42	-0.10	-1.15	-1.87
DD	+0.23	+0.15	+1.48	-0.34	+1.52
EE	+1.11	+2.32	+1.14	+0.23	+4.80
		•		•	

(The Subject's Score Expressed as o from the Mean Score)

* Subjects who terminated tests for psychological reasons

WADC TR 59-505

TABLE 6.3

FINAL RANKING OF CANDIDATES ON PHYSICAL FITNESS TESTS

(The Subject's Score Expressed as o from the Mean Score)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	K EE BB V G H Y DD S L P Z AA C A	+9.28 +4.80 +3.98 +2.42 +2.41 +2.03 +1.59 +1.52 +1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	BB V G H Y DD S L P Z AA C A	$\begin{array}{r} +3.98\\ +2.42\\ +2.41\\ +2.03\\ +1.59\\ +1.52\\ +1.23\\ +1.17\\ +1.13\\ +0.84\\ +0.72\\ +0.39\\ +0.37\end{array}$
5 6 7 8 9 10 11 12 13 14 15 16 17	V G H Y DD S L P Z AA C A	$\begin{array}{r} +2.42 \\ +2.41 \\ +2.03 \\ +1.59 \\ +1.52 \\ +1.23 \\ +1.17 \\ +1.13 \\ +0.84 \\ +0.72 \\ +0.39 \\ +0.37 \end{array}$
5 6 7 8 9 10 11 12 13 14 15 16 17	G H Y DD S L P Z AA C A	+2.41 +2.03 +1.59 +1.52 +1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
6 7 8 9 10 11 12 13 14 15 16 17	H Y DD S L P Z AA C A	+2.03 +1.59 +1.52 +1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
7 8 9 10 11 12 13 14 15 16 17	Y DD S L P Z AA C A	+1.59 +1.52 +1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
8 9 10 11 12 13 14 15 16 17	DD S L P Z AA C A	+1.52 +1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
9 10 11 12 13 14 15 16 17	S L P Z AA C A	+1.23 +1.17 +1.13 +0.84 +0.72 +0.39 +0.37
10 11 12 13 14 15 16 17	L P Z AA C A	+1.17 +1.13 +0.84 +0.72 +0.39 +0.37
11 12 13 14 15 16 17	P Z AA C A	+1.13 +0.84 +0.72 +0.39 +0.37
12 13 14 15 16 17	Z AA C A	+0.84 +0.72 +0.39 +0.37
13 14 15 16 17	AA C A	+0.72 +0.39 +0.37
14 15 16 17	C A	+0.39 +0.37
15 16 17	A	+0.37
16 17		
17		
	E	+0.28
10	R	+0.23
18	0	- 1.48
19	CC	-1.87
20	Ť	- 2.19
21	M	- 2.23
22	X	- 2.62
23	I	- 2.75
24	U	- 2.84
25	J .	- 2.99
26	· W	-4.13
27	Q · · · · ·	-4.87
	B*	
· .	D*	
•	F* N*	

 Subjects who terminated tests for psychological reasons

WADC TR 59-505

REFERENCES

6.1. McGuire, T. F. Stress Tolerance Studies, Part I. Unpublished Data. 1958.

- 6.2. McGuire, T. F. Tolerance to Physical Stress, Part II. Unpublished Data. 1958.
 - Balke, B. Correlation of Static and Physical Endurance. Proj. No. 21-32-004. Air University, School of Aviation Medicine, Randolph Air Force Base, Texas. 1952.
 - 6.4. Hale, H. B., et al. Changes in Plasma Corticosteroids and Bicarbonate as a Result of Piloting Supersonic Aircraft. Report 59-61. Air University, School of Aviation Medicine, Randolph Air Force Base, Texas. April 1959.
 - 6.5. Hale, H. B., et al. "Plasma Corticosteroid Levels in Aircrewmen after Long Flights." J. Clin. Endocrin. and Metab. XVIII. 1440-43. December 1958.
 - Marchbanks, V. H., Jr., et al. "Effect of Flying Stress on Urinary 17 Hydroxycorticosteroid Levels: Observations During a 22-1/2 Hour Mission." J. Av. Med. 29: 676-682. September 1958.
 - 6.7. Wiggers, C., et al. "Standardization of Blood Pressure Readings." <u>Am. Heart J.</u> 18: 95-101. July 1939.
 - 6.8. Dermksian, G., and L. Lamb. Cardiac Arrhythmias in Experimental Syncope. Report 59-16. Air University, School of Aviation Medicine, Randolph Air Force Base, Texas. November 1958.

CHAPTER VII

PSYCHOLOGICAL TESTS

G. E. Ruff, Capt., USAF, MC

INTRODUCTION

Because the emotional demands of space flight may be severe, a variety of psychological tests were included in the Project Mercury Candidate Evaluation Program. Criteria for recommendations on each candidate's psychological qualifications were based both on the mission requirements and on a study of behavior under stress conditions analogous to those anticipated during an orbital flight. These requirements suggested that the following general characteristics would be desirable in the pilot of a space vehicle:

1. He should have a high level of intelligence, with abilities to interpret instruments, perceive mathematical relationships, and maintain spatial orientation.

2. He should demonstrate evidence of sufficient drive and creativity to insure positive contributions to the development of the vehicle and other aspects of the project as a whole.

3. He should not be overly dependent on others for the satisfaction of his needs. At the same time, he must be able to accept dependence on others—engineers, ground crews, and the like—when required for the success of the mission. He must be able to tolerate both close associations and extreme isolation.

4. The pilot should be able to function when out of familiar surroundings and when usual patterns of behavior are impossible.

5. He must show evidence of ability to respond predictably to foreseeable situations, without losing the capacity to adapt flexibly to circumstances which cannot be foreseen.

6. His motivation should depend primarily on interest in the mission rather than on exaggerated needs for personal accomplishment.

7. He should not demonstrate evidence of impulsivity. He must act when action is appropriate, but refrain from action when inactivity is appropriate. He must be able to tolerate stressful situations passively without requiring motor activity to dissipate anxiety.

FSYCHOLOGICAL EVALUATION TECHNIQUE

The psychological evaluation included 30 hours of psychiatric interviews, psychological tests, and observations of stressful tests. The information obtained was used to rate candidates in each of 17 categories. Ratings were made on the basis of specific features of behavior, both as indicated by the past history and as observed during the interviews and tests. The 17 categories are:

1. Drive. --- An estimate of the total quantity of instinctive energy

2. Freedom from Conflict, and Anxiety. — A clinical evaluation of the number and severity of unresolved problem areas and of the extent to which they interfere with the candidate's functioning.

WADC TR 59-505

3. Effectiveness of Defenses. — A rating of the efficiency of psychological defenses. It was asked, for example, whether defenses are flexible and adaptive or rigid and inappropriate.

4. Free Energy. — An evaluation of the quantity of neutral energy. An attempt was made to determine whether defenses were so expensive to maintain that nothing is left for creative activity.

5. Identity.—An appraisal of how well the candidate has established a concept of himself and his relationship to the rest of the world

6. Object Relationships.—An estimate of the candidate's capacity to form genuine relationships. Can he withdraw from these when necessary? To what extent is he involved in his relationships with others?

7. Reality Testing.—An evaluation of the degree to which the subject's view of his environment is undistorted. It was also determined if his life experiences had been broad enough to allow a sophisticated appraisal of the world and if his view of the mission represents fantasy or reality.

8. Dependency.—An estimate of how much the candidate must rely on others. How well does he accept dependency needs? Is separation anxiety likely to interfere with his conduct of the mission?

9. Adaptability.—A rating of how well he adapts to changing circumstances. What is the range of conditions under which he can function? What are the adjustments he can make? Can he compromise flexibly?

10. Freedom from Impulsivity.—An evaluation of the candidate's capacity to delay gratification of his needs. This depends partly on whether his behavior in the past has been consistent and predictable.

11. Need for Activity.—An estimate of the minimum degree of motor activity required. Can the candidate tolerate enforced passivity?

12. <u>Somatization</u>.—An estimate of the probability that the candidate will develop physical symptoms while under stress

13. Quantity of Motivation. —An evaluation of how strongly the candidate wishes to participate in the mission. Are there conflicts between motives? Are these conflicts conscious or unconscious? Will his motivation remain at a high level?

14. Quality of Motivation. — A rating of the effectiveness of the candidate's motivation. Is he motivated by a desire for personal gratification? Does he show evidence of self-destructive wishes? Is he attempting to test adolescent fantasies of invulnerability?

15. Frustration Tolerance.—An appraisal of the probable result of failure to reach established goals. What behavior can be expected in the face of annoyances, delays, or disappointments?

16. Social Relationships. — An evaluation of how well the subject works with a group. Does he have significant authority problems? Will be contribute to the success of missions for which he is not chosen as pilot? How well do other candidates like him?

interviews, test results, and other information considered relevant.

PSYCHOLOGICAL TESTS

Initial evaluations of the candidates were made by two psychiatrists, who carried out separate interviews of each man. Ratings by the psychiatrists were compared, information was pooled, and a combined rating was made. Areas of doubt and disagreement were recorded for subsequent investigation.

The men accepted for the final screening procedure were seen again several weeks later, after an intensive evaluation of their physical status had been completed. Each candidate was reinterviewed and the following psychological tests were administered:

Personality and Motivation:

and the second second

1. Rorschach Test.—By observing the nature of a subject's associations to 10 ambiguous ink blots, the psychologist is able to probe relatively deep levels of the personality. Important information on emotional conflicts and defense mechanisms can be obtained by analyzing what is seen and how it is seen.

2. Thematic Apperception Test.—The subject is asked to tell stories suggested by a series of pictures. This test yields information about interpersonal relationships on a fairly deep level.

3. Draw-a-Person. ----By drawing male and female human figures, the subject gives information on his body image and feelings about his place in the world.

4. Sentence-Completion Test.—This is a series of incomplete sentences which are completed by the subject. His choice of conclusions provides further personality data.

5. Minnesota Multiphasic Personality Inventory. — An objective paper-and-pencil test which offers a description of personality based on responses to a 566-item questionnaire.

6. <u>Gordon Personal Profile</u>.—Information on 5 aspects of personality is obtained by asking the subject to choose, from each of 17 groups of 4 statements, the one which describes him best and the one which describes him least.

7. Edwards Personal Preference Schedule. — The subject must choose one statement from each of 225 pairs of self-descriptive statements. This yields scores representing 12 personality dimensions.

8. Shipley Personal Inventory.—A test involving 20 pairs of self-descriptive statements related to psychosomatic problems

9. Outer-Inner Preferences. — The subject chooses one statement from each of 52 pairs of statements on feelings about activities, things, and other people. This measures interest in and dependency on social groups.

10. Pensacola 2.—By choosing one statement from each of 66 pairs of statements, the subject gives information on "authoritarian" attitudes.

11. Officer Effectiveness Inventory.—A multiple-choice, self-descriptive test of characteristics related to successful officer performance

12. "Who Am I?"—The subject is asked to write 20 answers to the question: "Who am I?" This is interpreted projectively to give information on identity and perception of social roles.

WADC TR 59-505

13. Peer Ratings.—Each candidate is asked to indicate which of the other member's of the group accompanying him through the program he likes best, which one he would like to accompany him on a two-man mission, and which one he would assign to the mission if he could not go himself.

Intellectual Functions and Special Aptitudes:

1. Wechsler Adult Intelligence Scale. — A relatively objective measure of 11 verbal and performance functions

2. Miller Analogies. --- A test of intelligence based on the ability to comprehend analogies

3. Raven Progressive Matrices. — A test of nonverbal concept formation

4. Doppelt Mathematical Reasoning Test.—A test of mathematical aptitudes

5. Engineering Analogies. ---- A measure of engineering aptitudes and achievement

6. Mechanical Comprehension. — A measure of mechanical aptitudes and ability to apply mechanical principles

7. Air Force Officer Qualification Test. — The portions used are measures of verbal and quantitative aptitudes.

8. Aviation Qualification Test (USN).--- A measure of academic achievement

9. Space Memory. ---- A test of memory for location of objects in space

10. <u>Spatial Orientation</u>.—By testing the speed of locating details in aerial photographs and matching photographs with maps, spatial visualization and orientation are determined.

- --- 11. Gottschaldt Hidden Figures. — A measure of ability to locate a specified form imbedded in a mass of irrelevant details

12. Guilford-Zimmerman Spatial Visualization.--- A test of ability to visualize movement in space

REACTIONS TO STRESS TESTS

In addition to the interviews and tests, important information was obtained from the reactions of each candidate to a series of stress experiments simulating conditions expected during the mission. Neither the design of these tests nor the physiological variables measured will be discussed. Psychological data were derived from direct observation of behavior, postexperimental interviews, and administration before and after each run of alternate forms of six tests of perceptual and psychomotor functions. These procedures were:

1. Pressure Suit Test.—After dressing in a tight-fitting garment designed to apply pressure to the body during high-altitude flight, each candidate entered a chamber simulating an altitude of 65,000 feet. This produces severe physical discomfort and confinement.

2. Isolation. — Each man was confined to a dark, soundproof room for 3 hours (see figure 7.1). While this brief period is not stressful for most people, data are obtained on the style of adaptation to isolation. This procedure aids in identifying subjects who cannot tolerate enforced inactivity, enclosure in small spaces, or absence of external stimuli.

3. <u>Complex Behavioral Simulator</u>. — The candidate was required to make different responses to each of 14 signals which appeared in random order at increasing rates of speed (see figure 7.2). Since the test produces a maximum of confusion and frustration, it measures ability to organize behavior and to maintain emotional equilibrium under stress.

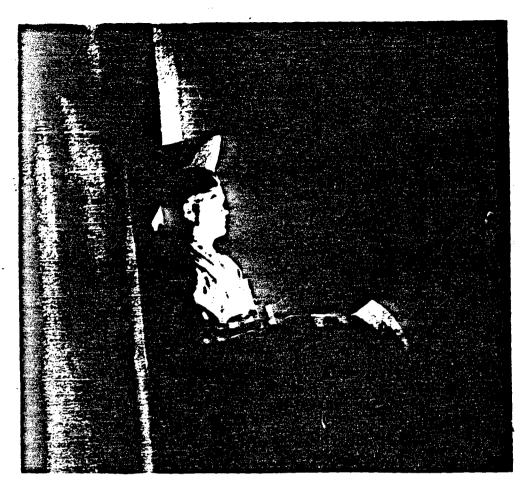
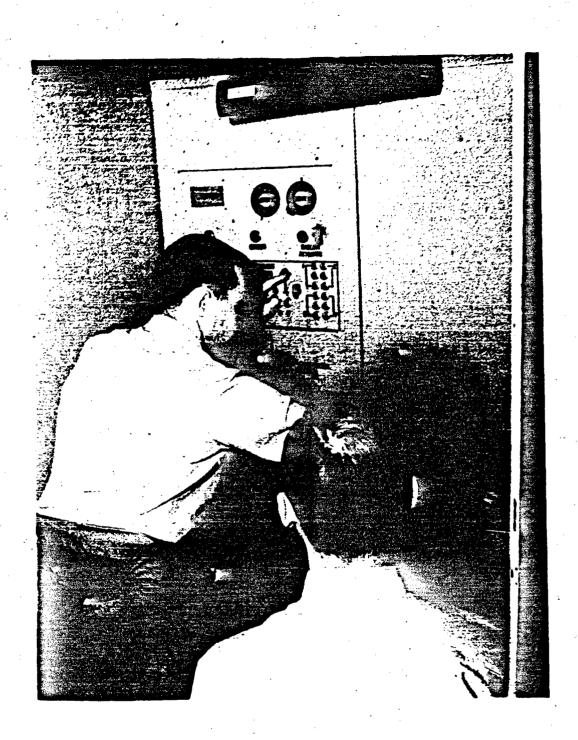
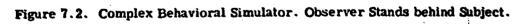


Figure 7.1. Isolation Test. Light on Subject's Face for Photographic Purposes Only

4. Acceleration. — The candidates were placed on the human centrifuge in various positions and subjected to different g-forces. This procedure leads to anxiety, disorientation, and blackout in susceptible subjects.


5. Noise and Vibration.—Candidates were vibrated at varying frequencies and amplitudes and subjected to high-energy sound. Efficiency is often impaired under these conditions.

6. Heat.—Each candidate spent 2 hours in a chamber maintained at 130° F. Once again, this is an uncomfortable experience during which efficiency might be impaired.


FINAL RANKING

After all of the tests were completed, an evaluation of each man was made by a conference of those who had gathered the psychological data. Final ratings were made in each category described previously and special aptitudes were considered. Each candidate was then ranked according to the estimate of his psychological qualifications for the mission.

WADC TR 59-505

のいたいというないで、おいたので、たちないないないないないで、ないで、

CHAPTER VIII

THE CANDIDATE EVALUATION COMMITTEE

The Candidate Evaluation Committee rendered professional interpretation of the biomedical data collected at the Aerospace Medical Laboratory during testing of the candidates. The final objective was to rank and recommend the candidates. The candidates ranked as outstanding were, in the opinion of the Committee, the most desirable team members for Project Mercury. The candidates not recommended were not desirable as members. The remaining candidates were ranked as highly recommended. This means that they were suitable for Project Mercury, but did not demonstrate the characteristics seen in the outstanding group.

ORGANIZATION

Chairman:

The position of chairman was occupied by the Aerospace Medical Laboratory Project Coordinator. He presided at all meetings and established rules of policy.

Secretary:

The position of secretary was filled by the Candidate Evaluation Program Task Officer. His duties consisted of receiving, from each principal investigator, the raw data, mark sense cards, narrative summaries, and other pertinent information derived from the candidates, and then dispersing this information to appropriate agencies for use in the selection of the Mercury Astronauts. He maintained written records of each meeting.

Principal Investigators:

Each unit was represented on the Committee by the principal investigator or his appointed representative. The principal investigator was responsible for preparing: interpretive summaries on each candidate, mark sense cards, and records of test performance.

Assistant Investigators:

Each unit was encouraged to send assistant investigators to the Committee meetings where they contributed to the information and evaluation of the candidates.

PROCEDURE

Weekly Meetings:

A meeting of the Committee was held each week. Once the Committee was assembled, each unit's principal investigator briefed the Committee on the results of each candidate's performance. Prior to the Committee briefing, the investigator and his assistants avoided discussion of the candidate's performance with any other Committee member except in the rare instances where it was medically indicated. Each principal investigator performed a unit ranking of the candidates, based on performance, and each week the unit ranking list incorporated all of the previously tested candidates. When the Committee had been thoroughly briefed on all of the candidates each week, it jointly ranked them.

WADC TR 59-505

THE CANDIDATE EVALUATION COMMITTEE

WADC TR 59-505

Final Meeting:

The final Committee meeting accomplished two tasks. First, the Committee, ranked all of the candidates on the basis of total performance as it had done each previous week. Second, the Committee rated each of the candidates as outstanding, highly recommended, or not recommended.

In an approach to final candidate recommendations, it was the unanimous opinion of the Committee that candidates, with character traits undesirable in the team effort, should not be recommended. It was the opinion of the Committee that there were eight candidates who should not be recommended for Project Mercury because they demonstrated a lack of the attributes necessary in the team effort of Project Mercury.

The remainder of the candidates (23) were divided into outstanding or highly recommended. Those who were chosen as outstanding candidates demonstrated excellence in maturity, intelligence, motivation, and emotional stability. It was desirable but not mandatory that they also demonstrated excellence in physiological performance to the stressful tests which were given throughout the Aerospace Medical Laboratory. The candidates ranked as highly recommended performed in a highly satisfactory manner and were seemingly adequate for Project Mercury. But on the basis of competitive performance they had not attained that degree of excellence which had been demonstrated by those rated as outstanding. Seven candidates were recommended as outstanding, without reservations. Three additional candidates were recommended as outstanding with reservations. The reasons for reservations were:

1. One candidate was not entirely sure that he desired to continue on in Project Mercury.

2. One candidate had a heart murmur of probable organic etiology.

3. One candidate had a very high index of strain as a result of his performance on the heat test.

The purpose of the reservations was to bring these problems to the attention of the NASA selection team.

There were 13 candidates who were highly recommended. Table 8.1 is a summary of the ranking of all of the candidates by each unit. Table 8.2 lists the Committee's final recommendations.

The candidates chosen as Mercury Astronauts by the National Aeronautics and Space Administration were: G, K, R, S, U, Z, EE. All but one of the candidates recommended as outstanding by the Committee were chosen as Mercury Astronauts.

TABLE 8.1

FINAL RANKING OF CANDIDATES

UNIT RANKING

Acceleration	Biological Acoustics Noise	Biological Acoustics Vibration	Heat	Physical Fitness	Psychology
DD	D	J	G	K	EE
G	· v	H	P	EE	R
J	E	B	Q	BB	Ζ.
R	S	Q.	Ŭ	V	DD
M	BB	EE	DD	G	K
K	G	U	I	H	CC
0	P .	F	E	Y	L
· F	Q	A	H	DD	G
V	I	С	v	S	Υ Q
D	U	V	AA	L	Ū
. X	AĀ	P	S	P	J
U -	В	BB	L	Z	. E
Ĥ	·	G	K	ÅÅ	Ō
P	R	L	С	С	BB
EE	CC	X	A	Ă	S
BB	C ·	Ŵ	N	E	W
· S	Y ·	CC	BB	• R	Y
AA	J	К.	· CC -	.0	AA.
E	DD	S S	EE	CC	В
2	T	T	: Z -	T	P
W	X	DD	F	M	X
L	L	D	D	X	· I
· Y	K	Y	M	I	A
Т	EE	M	В	U .	C
. C	N	2	J	J	М
A	M	R	Y	W	v
В	0	I	· 0	Q \	N N
N	H ·	Ö	R	B	H
Q	Ŵ	AA	W	D	D
CC	2	Б	T	F	T
. 1	F	N	X	N.	F

WADC TR 59-505

90

ς.

TABLE 8.2

FINAL RECOMMENDATIONS

Outstanding Without Reservations	Outstanding With Reservations	Highly Recommended	Not Recommended
G	R	۸.	В
L	V	С	D
K	DD	E	F
S		J	H•
U	-	м	I
Z		ο	N
EE		P	T
· · · · ·		Q	. X
	•	W	
		Y	
		AA	-
	· · · · · ·	BB	

91

CC

WADC TR 59-505

CHAPTER IX

DATA PROCESSING CORRELATION STUDIES

C. L. Wilson, Capt., USAF, MC

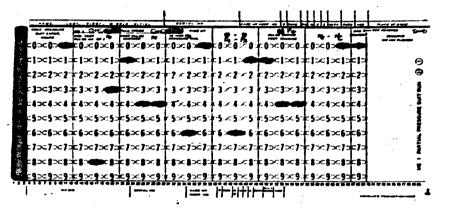
TECHNIQUE

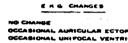
Whenever a test was given to a candidate, raw data were gathered. In some instances, the performance data could be expressed as one numerical value (for example, the positive g before blackout). More frequently, the performance data formed a lengthy list of components (for example, pulses, blood pressures, biochemical values, and subjective comments). Some of these components were rendered into a final score, not always a reflection of all of the component bits of information.

For example, the components of performance of the partial pressure suit test are:

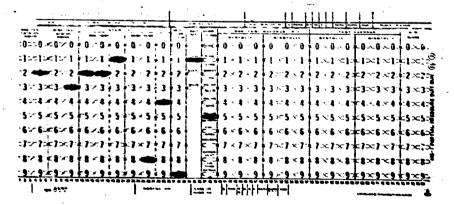
- 1. $P_r = 83$
- 2. P, = 144
- 3. Test abort due to presyncope
- 4. Test abort due to tachycardia
- 5. Test abort for psychological reasons
- 6. Duration at 65,000 feet
- 7. Previous pressure suit experience
- 8. Pretest urinary catacholamine
- 9. Posttest urinary catacholamine
- 10. Pretest plasma steroid
- 11. Posttest plasma steroid
- 12. Pretest 3-methoxy-4-hydroxymandelic acid
- 13. Posttest 3-methoxy-4-hydroxymandelic acid

The final MC-1 score only reflected the pulse change during the test. The score was $S_{mc-1} = P_t - P_r = 61$. Thus, the final score did not reflect all of the component bits of data gathered during the test.


MARK SENSE CARD


It became apparent that a great portion of the component data could not conveniently be incorporated into the final test score. It was desirable that these components in some way be recorded and correlated with one another to determine the existence or nonexistence of any significant

WADC TR 59-505


relationships. For example, it would be valuable to demonstrate if there is a significant correlation between an increasing A-P diameter of the chest by anthropometric measurement and an increasing ability to breathe more normally at 8 forward g's. It would also be valuable to know if those chosen as Astronauts demonstrated performance significantly different from the non-Astronauts.

It was possible to record these test components on a mark sense card.* Figure 9.1 shows an example of the mark sense cards which were developed for the MC-1 partial pressure suit test. The data on the example card was extracted from the MC-1 test example.

- ICULAR ECTOPIC BEAT POCAL VENTRICULAR
- ECTOPIC BEATS BRADYCARDIA MILD (PULSE GREATER
- ----
- MANYCARDIA SEVERE (PULSE LESS
- FLAT.T WAVES
- DEPRESSED DAY BEUMLAY PROLONGED GARS (ABOVE 9.12 SE OTHER DESCRIBE IN INK SELOW A 9.12 97CO

Valuable advice on the application of this mark sense card came from A. H. Schwichtenberg, Brig. General, USAF, MC (Ret.), Head, Department of Aviation and Space Medicine, Lovelace Foundation, Albuquerque, New Mexico. Dr. Schwichtenberg also expedited the development of appropriate cards for each test given at the Aerospace Medical Laboratory.

The marked card is later processed in a mark sensing machine.* These cards must also be identified as to subject, card number, and test. This can easily be done by punch holes. When the card is complete it will have the subject's identity, test, and component data.

VARIABLES FOR CORRELATION

Each testing section was queried as to what components (variables) it wished to submit for correlation studies. Appendix IV lists those variables. There were 104 of them to be correlated.

QUESTIONS TO BE ANSWERED

Once the data had been collected, reduced, and the component information placed on punch cards, it became feasible to program specific correlation trials which the card processor could perform. All answers were expressed as correlation coefficients.

When a correlation coefficient is other than zero, an apparent relationship exists between the two variables. When an apparent relationship exists between variables A and B it may mean one of the following:

1. That there is a cause and effect relationship.

2. That there is a denominator common to A and B.

3. That there is no actual relationship between A and B, but that the apparent relationship was due to chance in sampling.

The correlation coefficient is expressed as r. In sampling of 31 subjects from a universe, if r is greater than 0.449, then one may be at least 99% confident that any relationship which apparently exists is not due to chance. If r is greater than 0.8000 then one may infer that the relationship which exists is very probably real. If r is less than 0.2000 then it is highly probable that the components are not actually related by cause and effect or a common denominator. When a minus sign precedes r, an apparent negative correlation exists.

EXAMPLE OF INTERPRETATION

Component 16 compared with component 17 has a high r value of 0.8909. It appears that the total I.Q. and the verbal I.Q. are significantly related. This interpretation appeals to reason.

Component 16 compared with component 101 has an r value of 0.5150. While it is conceivable that a real relationship between I.Q. and milliliters of oxygen/pulse could exist, it is more reasonable to conclude that no real significance exists, and that the apparent cause for relationship is not obvious.

Appendix IV demonstrates that there are approximately 250 r values greater than 0.449. The reader must judge for himself which variables are significantly related. Often where there are high

 The data processing was accomplished through an existing contract with the University of Dayton. Miss Theresa A. Fricke, statistical consultant, contributed greatly to the final data processing and calculation of correlation coefficients.

WADC TR 59-505

r values (above 0.8000), the two variables are measurements of the same or nearly the same test. Examples are: 16 and 17, 51 and 53, 65 and 102, 73 and 83, and 94 and 95.

In addition to determining the significant correlations between various tests, it was valuable to know if there was a difference between the performance of the Astronauts and the non-Astronauts. This was determined by a statistical analysis (see Appendix V).

To test whether the variability of the test performance among the Astronauts is the same as the variability among the non-Astronauts, the ratio of the variances (S^2) of the two groups is used. This ratio is taken such that the larger S^2 is in the numerator. The ratio is compared with the critical F statistic. If the computed ratio exceeds the critical F statistic of 3.71 (with S^2 of the numerator based on 7 observations and S^2 of the denominator based on 24) or the critical F statistic of 7.33 (with S^2 of the numerator based on 24 observations, S^2 of the denominator based on 7) then the two variances are significantly different from one another at the 99% confidence level. The following tests show the significant differences in variability between the two groups:

Test	x,	$\overline{\mathbf{x}}_{\mathbf{N}}$	s²A	s² _N	F
36	39.0	37.5	24.00	302.69	12.61
86	787.1	626.1	287057.18	50943.43	5.63
94	6.0	9.3	3.33	32.25	9.68
100	191.4	176.1	1407.03	322.65	4.36
103	54.7	57.9	20.41	227.17	11,13

🕱 = Mean Astronaut Score

t

 S_A^Z = Astronaut Variance

 \overline{X}_N = Mean Non-Astronaut Score S^2_N = Non-Astronaut Variance

F Represents the Ratio of the Variances

To test whether the mean test result of the Astronauts is significantly different from the mean result for non-Astronauts, the difference between these two means is examined in relation to the variance of the means. In other words, the difference is examined in the light of how well that difference can be reproduced. This is done by means of the t statistic (t represents the probability of statistical difference).

$$\frac{\overline{X}_{A} - \overline{X}_{N}}{\frac{6S^{2}_{A} + 23S^{2}_{N}}{29}(\frac{1}{7} + \frac{1}{24})}$$

The 99% critical value of t with variance based on 29 observations is 2.756. Only two tests exceeded this value:

Test	X	x _n	s ² A	s² _N	F	t	
1	7.6 ,	6.5	0.36	0.78	2.16	3.0	
22	15.7	13.8	1.08	2.69	2.49	2.8	

WADC TR 59-505

It may be concluded that the Astronaut performance was significantly different from the non-Astronauts on only two tests, both psychological—1 (Total Psychological Score) and 22 (Similarities in WAIS, Wechsler Adult Intelligence).

CHAPTER X

DISCUSSION AND RECOMMENDATIONS

Thirty-one highly selected adult males were the subjects of a crew recommendation study. Data were gathered from the performance of each subject on each test. One hundred and four performance variables were correlated. The following statements represent preliminary impressions from this Project Mercury Candidate Evaluation Program. It is recognized that the investigators were studying a small, highly selected population. Therefore, it is difficult to render conclusions on statistical significance.

1. Psychological stability is the most important consideration in evaluating a candidate. The intelligence, maturity, and motivation of a candidate are vital areas to be assessed before rendering a recommendation.

2. Excellent physiological performance was a secondary consideration in the final Committee recommendations.

3. The main value of a severely stressful physiological test was the interpretation of the psychological response to that stress test. Whenever a subject terminated a severe test for psychological reasons, he was not recommended by the Committee.

4. It is possible to eliminate subjects by use of stressful tests. It is not presently possible to select subjects with confidence, where selection is based entirely upon their excellent physiological performances.

5. No single, nonsimulating test has been identified which will be of great assistance in recommending crew members. A large battery of tests, such as were performed, lends confidence to the final recommendations.

6. Whenever a candidate is being considered for a special mission, it is desirable that a large number of trained observers each have the opportunity to test him and to render an opinion before the final recommendation.

7. This study has demonstrated that there is no statistically significant difference in the physiological or biochemical responses of the Mercury Astronauts when compared with the remainder of the NASA candidates.

8. There is no evidence to support a thesis which maintains that visual inspection, biochemical measurements, or physiological responses of a candidate are of principal value in rendering a reliable recommendation of suitable candidates. These are secondary considerations.

9. While the hormones and their metabolites are valuable research tools, this study has demonstrated that they were not significantly different in the Mercury Astronauts when compared with the remaining NASA candidates.

10. There is every reason to suspect that safe, standardized, moderately stressful and severely stressful tests (such as having the subject walk on the treadmill until he voluntarily terminates) would be of great assistance in future crew recommendation programs, since severe stress also tests the candidate's motivation.

11. It is believed that testing of those who did not volunteer as candidates would be valuable, since the nonvolunteer group might lack the same intensity of motivation which was possed by the volunteers.

WADC TR 59-505

APPENDIX I

MEDICAL EVALUATIONS PERFORMED AT THE LOVELACE FOUNDATION

SCHEDULE I. LABORATORY TESTS

Cholesterol Differential Hemoglobin Leucocytes Hematocrit Blood Grouping RH Factor Serology Sedimentation Rate Liver Function Test (BSP) Sperm Count Throat Culture and Smear Smear of Nasal Mucosa Serum Protein-Bound Iodine Special Hematology Smear Blood Sugar Stool Examinations for Ova and Parasites Urinalysis Gastric Analysis Electrocardiogram with Master 2-Step Ballistocardiogram Electroencephalogram 24-Hour Urinary 17-Ketosteroid Excretion Electrolyte Studies Catacholamines Urinary Urea Clearance Protein Electrophoresis

SCHEDULE II. X-RAY EXAMINATIONS

Chest - P-A during Inspiration, P-A during Expiration, Right Lateral of Chest Colon - Barium Enema (High kv. Technique Used for Compression Spot Films; Image Intensifier Used for Fluoroscopy)

Sinuses

Lumbosacral Spine - A-P and Lateral (Obliques when Indicated) Stomach and Esophagus - (Image Intensifier Used for Fluoroscopy) Teeth

SCHEDULE III. OPHTHALMOLOGY

History and Examination including Dilation, Visual Fields, Tonometry, Slit Lamp Studies, Dynamic Visual Acuity, and Depth Perception Test

Dark Room Examination

Photography of Conjunctival Vessel and Retina

SCHEDULE IV. OTOLARYNGOLOGY

Examination, Indirect Laryngoscopy, and Nasopharyngoscopy Audiogram and Audiogram with Background Noise Speech Discrimination Test and Tape Recording of Voice Labyrinthine Sensitivity Studies - Caloric Test

NADC TR 59-505

SCHEDULE V. SPECIAL PHYSIOLOGICAL EXAMINATIONS

Bicycle Ergometer Test

Pulmonary Function Tests - Vital Capacity and Maximum Breathing Capacity Total Body Radiation Count - Performed by Los Alamos Scientific Laboratory K^{40} Method of Determination of Lean-Body Mass - Performed by Los Alamos

Scientific Laboratory Specific Gravity of Whole Body Blood Volume and Total Circulating Hemoglobin Total Body Water Determination

SCHEDULE VI. CARDIOLOGY

Examination by Cardiologist Special Vectorcardiogram Phonocardiogram

SCHEDULE VII.

Complete Medical History with Special Questions on Aviation Experience

WADC TR 59-505

APPENDIX II

MODIFICATIONS OF PHYSICAL FITNESS TESTS

Harvard Step Test:

1. All subjects will be provided with tennis shoes since testing in stocking feet may produce blisters or hematomas.

2. All subjects must try to continue to perform for 5 minutes on the Harvard step test. Even if their pace slacks to a very slow speed, they shall be encouraged. If they voluntarily quit (none of them did), this shall be recorded. The number of steps-up will be counted on a mechanical counter. The main reason for this change is that it would be impossible to reschedule the subject for a future step test. Another reason for encouraging the candidate to continue for 5 minutes is to give the observer a chance to see and describe the subject's coordination, motivation, and physical stamina. Such observations greatly assist the investigators in their narrative summaries.

Flack Test:

Only the length of time that the subject maintained the column of mercury at 40 mm. Hg was recorded. Since the test is of questionable value, it was decided to use the most promising measurement. Powell and Sunahara^{II.1} report extensively on this test.

Cold Pressor Test:

No changes were made in the administration of this test. These subjects did not know about this test until the moment they were confronted with ice water. It is very interesting and probably significant that the coinvestigators independently decided that all subjects should be able to keep their feet in the ice water for the 7 minutes. Those who withdrew their feet were probably less motivated, probably uncooperative. Having made this decision, they then read McGuire's interpretation $II \cdot 2$ which is identical. The coinvestigators declined further interpretation of the cold pressor test. Here was an excellent opportunity to correlate a physiological reaction with the Mercury Astronaut population and with other tests performed throughout the laboratory. Since the Mercury Astronauts were chosen with no consideration for physiological responses to the cold pressor test, there would be no previously existing relationship.

MC-1 Test:

Several changes were incorporated into this test:

1. The feet were not wrapped with ace bandage. Abundant evidence (Wilson and Zinn^{II.3}) shows no MC-1 terminations because of foot discomfort. No NASA subject complained of foot discomfort when wearing regular oxford shoes during the test. In the past an occasional test would be aborted because of ischemia caused by the ace bandage being too tight.

2. Blood pressures were not recorded. The errors inherent in the strain gauge method and the delays so frequently encountered in balancing the strain gauge rendered it impractical. When a reliable method is available, it will be of great value.

3. The precordial leads were not used. Detailed analysis of previous precordial and standard EKG tracings demonstrates that sufficient information for analysis is available in the standard leads.

WADC TR 59-505

4. The MA-2 helmet was used in lieu of the short neckseal K-1. The purpose was twofold. The neckseal of the K-1 helmet was a frequent cause of MC-1 pressure suit test abortions. Often the K-1 neckseal leaked dangerously, lowered the bladder and helmet pressures to hypoxic levels in 5% of McGuire's cases. Also, the K-1 helmets were sufficiently uncomfortable to cause test abortion in 7% of McGuire's cases.^{II.4} Since these NASA subjects were only available for one test, and since the endpoint of testing was intended to be either physiological or psychological, a more reliable and comfortable helmet was chosen. The MA-2 helmet met the requirements: A secondary reason was to determine the percent of presyncopic terminations in pilot populations wearing these two different helmets. McGuire^{II.2} reasons that at least part of the episodes of syncope or presyncope (vide infra) could be due to carotid body or common carotid artery pressure. This argument has some merit since the poor counterpressurizing neck of the helmet does cause locally higher capillary pressure which effects a transfer of more fluid into the cells and interstitial spaces. Wilson and ZinnII.3 had described actual extra-arterial occlusion subsequent to poor counterpressurization. If McGuire's series of a similar pilot population wearing the K-1 helmet experienced greater frequency of presyncope or syncope than the NASA candidate population, then further evidence to support the thesis that the poor neck counterpressurization of the K-1 helmet was in part responsible for cases of syncope.

5. There were no other departures from the MC-1 test profile. The program was strictly adhered to in every case. The endpoints for termination were those recommended by a joint agreement of McGuire, Leary, and Wilson (vide infra).

6. The scoring system was changed. The coinvestigators agreed with McGuire's thesis that an average test pulse, which is unchanged or only slightly higher than an average pretest resting *j* pulse, is desirable. This element was retained in the scoring. The coinvestigators reasoned that psychological terminations should be separated from physiological terminations. The coinvestigators did not recommend any candidate who terminated the MC-1 test for psychological reasons.

Wilson and Zinn^{II.3} reported that a sizable portion of different pilot populations (13% to 21%) have experienced presyncope or unconsciousness during the MC-1 test. There is no totally rational reason to eliminate a candidate because he becomes presyncopic during the test. In an attempt to perform an unbiased correlation between the development of presyncope and the selection of Mercury Astronauts, no interpretation was made of the episode of presyncope. Tachycardia (one case) was handled in an identical manner (vide infra).

Tilt Table Test:

Two minor variations were made in this test. Immediately after the subject terminated the S-minute Harvard step test, he stood on the tilt table which was preset at 65°. Thus, the long axis of the subject's body was 65° above the horizontal and the head was elevated. An assistant secured the shoulder braces while the investigator placed the blood pressure cuff on the subject's right arm. This took 30 seconds. Thus, it was possible to obtain a pulse and blood pressure during the first minute following the exercise. When the subject is directed to stand on the tilt table immediately after exercise (rather than rest on the horizontal for 2 minutes) there is less opportunity to compensate physiologically. Nausea, vomiting, and/or hypotension sufficient to terminate were evoked in three candidates during the first 5 minutes of standing on the tilt table. A second modification was the use of a transistorized transmitter* to convey pulse beats to a receiver. This ingenious radio broadcast was used to cross-check the accuracy of auscultatory measurements of test pulses, and to experiment with use of the transmitter during other physical exercise tests. The technique of scoring was modified. There are innumerable ways to express the subject's responses to this test. The scoring system adapted by the coinvestigators has the advantage of reflecting not only the

 This transistorized transmitter was designed and built by Dr. Adolph Mark of the Bioelectronics Section, Aerospace Medical Laboratory.

WADC TR 59-505

existence of hypotension, but also how long it remains. It also reflects a tachycardia and how great and how long it is. It is conceivable that even this scoring system will be proved to be inadequate.

Pulse Posture Test Technique:

A test similar to this was performed at the Lovelace Clinic. It was not necessary to duplicate this at the Aerospace Medical Laboratory.

Valsalva EKG:

This test was not performed. It was originally hoped that an expert in the administration of this test would be available. Expert supervision is needed since the test is potentially dangerous. Dermksian and Lamb^{II.5} reported 4 cases of cardiac arrest using a similar test. A shortage of medical specialists rendered it impossible to supply the medical staffing necessary to perform this test.

Mecholyl Test:

This test, although initially considered, was not performed on the NASA candidates. In a trial Mecholyl test, the subject suffered severe hypotension BP (96/44, 86/34, 86/50, 88/48 at various minutes), salivation of 500 cc., marked nausea, rhinorrhea, severe and frightening asthma, and near collapse. There was no bradycardia. The subject alway has been in excellent health and is presently on flying status. He never had experienced asthma and there was no familial allergic history. The coinvestigators strongly urge that this test be dropped from consideration for crew selection testing. More suitable tests—such as the measurement of adrenalcortical and medullary hormones or their metabolic byproducts were substituted.

Pressure Breathing Test:

This test was recommended by McGuire but not performed. It is agreed that this may be a valuable test, such as the MC-1 appears to be. The only reasons for excluding it were: it was similar in stress to the MC-1 test and both could not be scheduled. The experience of Capt. C.L. Wilson, physical fitness tests principal investigator, agrees with McGuire's that there are some interesting physiological and psychological responses. It is recommended that this test be considered for future programs.

WADC TR 59-505

REFERENCES

II.1. Powell, T. J., and F. A. Sunahara. "A Physiologic Evaluation of the Flack Test." J. Av. Med. 29: 444-453. June 1958.

II.2. McCuire, T. F. Stress Tolerance Studies, Part I. Unpublished Data. 1958.

- II.3. Wilson, C. L., and M. B. Zinn. "Medical Problems Associated with High-Altitude Suit Testing." J. Av. Med. (Submitted for Publication in May 1959)
- II.4. McGuire, T. F. Time-Altitude Capabilities of the MC-1 Partial Pressure Suit Ensemble. WADC TN 55-734. Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. December 1955.
- II.5. Dermksian, G., and L. Lamb. Cardiac Arrhythmias in Experimental Syncope. Report 59-16. Air University, School of Aviation Medicine, Randolph Air Force Base, Texas. November 1958.

WADC TR 59-505

APPENDIX III

CODING OF VARIABLES

PSYCHOLOGICAL

- 1. Over-all Rating of Candidate
- 2. Drive
- 3. Freedom from Conflict Anxiety
- 4. Effective Defense
- 5. Free Energy
- 6. Identity -
- 7. Object Relationships
- 8. Reality Testing
- 9. Motivation Quantity
- 10. Motivation Quality
- 11. Adaptability
- 12. Social Relationships
- 13. Freedom from Dependency
- 14. Freedom from Need for Activity
- 15. Freedom from Impulsitivity

Wechsler Adult Intelligence Scale:

- 16. I.Q. Total
- 17. I.Q. Verbal
- 18. I.Q. Performance
- 19. Information -
- 20. Comprehension
- 21. Arithmetic
- 22. Similarities
- 23. Digit Span
- 24. Vocabulary
- 25. Digit Symbol
- 26. Picture Completion
- 27. Block Design
- 28. Picture Arrangement
- 29. Object Assembly

Minnesota Multiphasic Personality Inventory:

- 30. Hysteria
- **31.** Depression
- 32. Hypochondria
- 33. Psychopathic Deviate

Rorshhach Test:

- 34. Total Responses (R)
- 35. Percent Good Form (F + %)
- 36. Percent Pure Form (F%)
- 37. Percent Animal Responses (A%)
- 38. Number of Popular Responses (P)
- 39. Number of Human Movement Responses (M)

WADC TR 59-505

Rorschach Test (continued):

- 40. Number of Whole Responses (W)
- 41. Number of Blank Space Responses (S)
- 42. Weighted Score of Color Responses $\left(\frac{FC + 2CF + 3C}{FC + 3C}\right)$
- 43. Inanimate Movement (Fm + m)
- 44. Animal Movement (FM)
- 45. Shade Responses (Fc + c)
- 46. Percent Responses on Color Cards $\left(\frac{\mathbf{VIII}-\mathbf{X}}{\mathbf{VIII}-\mathbf{X}}\right)$
- R 47. Sexual Responses (Sex)
- 48. Anatomy (At.)

ACCELERATION

- 49. Decrease in Vital Capacity at 5 g's Positive
- 50. Decrease in Vital Capacity at 5 g's Flat
- 51. Decrease in Vital Capacity at 8 g's Flat
- 52. Decrease in Vital Capacity at 5 g's Tilted
- 53. Decrease in Vital Capacity at 8 g's Tilted
- 54. Decrease in Vital Capacity at 12 g's Tilted
- 55. Blackout Level Positive g's
- 56. Increase in Pulse Rate during Positive g

ANTHPOPOMETRIC

- 57. Cervicale Height
- 58. Transverse Diameter of Chest
- 59. Transverse Diameter of Waist
- 60. A-P Diameter of Chest
- 61. A-P Diameter of Waist
- 62. Chest Circumference
- 63. Suprasternal Notch to the Waist
- 64. Cervicale to the Waist
- 65. Lean-Body Weight
- 66. Sitting Height/Stature 67. Trochanteric Height/Stature
- 68. Chest Depth/Chest Breadth
- 69. Waist Depth/Waist Breadth
- 70. Hip Breadth/Chest Breadth
- 71. Height/y wt.
- 72. Somatotype*
- 73. Present Weight
- 74. Stature

* This measurement was incorrectly correlated and should be disregarded.

BIOLOGICAL ACOUSTICAL

- 75. Percent Intelligibility
- 76. Deviation Score (Amount during Pitch and Roll)
- 77. Addition Test Scores $(Q_1 + Q_2 + N)$ Equals Total Addition Problems Completed
- 78. Q₁ + Q₂ 2N + 3 Equals Final Noise Score

HEAT VARIABLES .

- 79. Pulse
- 80. Systolic Blood Pressure
- 81. Diastolic Blood Pressure
- 82. Weight Body Temperature
- 83. Total Body Weight

PHYSICAL FITNESS

- 84. Tilt Table Test Score
- 85. Harvard Step Test Score
- 86. Flack Test Score
- 87. Valsalva Overshoot Test Score
- 88. Treadmill Test Score
- 89. Cold Pressor Test Score
- 90. MC-1 Partial Pressure Suit Score
- 91. Partial Pressure Suit Run (EKG
- Changes)
- 92. MC-1 Final Test Score
- 93. Catacholamine (Pre-MC-1 Test)
- 94. Catacholamine (Post-MC-1 Test)
- 95. Catacholamine Rise during MC-1 Test
- 96. Conjugated Hydrocortisone Pre-MC-1 Test
- 97. Conjugated Hydrocortisone Post-MC-1 Test
- 98. Conjugated Hydrocortisone Rise during MC-1 Test

LOVELACE FOUNDATION

- 99. Vital Capacity
- 100. Maximum Breathing Capacity
- 101. Milliliters Oxygen/Pulse
- 102. Lean-Body Mass
- 103. Protein-Bound Iodine
- 104. Resting Urine Sample Catacholamine

WADC TR 59-505

. . . .

APPENDIX IV

TABLE OF CORRELATION COEFFICIENTS ON 104 VARIABLES

		Corr.			Corr.			Corr.			Corr.			Corr.
ar.	Var.	Coel.	Var.	Var,	Coel.	Var.	Var.	Coel.	Var.	Var,	Coel.	Var.	Var.	Coef.
<u>A)</u>	(B)	(5)	(A)	(B)	(r)	(A)	(B)	(1)	(A)	(B)	(5)	<u>(A)</u>	(B)	(1)
1	1	10000	1	52	328	1	103	1043	Z	50	123*	Z	101	3681
1	2	6328	1	53	1147	1	104	762#	Z	51	761	Z	102	5120
î'	3	7796	i	54	677	-			2	52	640	Z	103	1421
ī	4	7999	1	55	1253	2	2	10000	2	53	1424	2	104	3261
ĩ	5	7636	i	56	21197	2	3	2642	2	54	633			
ī	6	6353	1	57	1098	2	4	5150	2	55	1469	3	3	10000
ī	7	6436	1	58	3228	2	5	7840	2	56	1610+	3	4	6445
ī	8	7554	1	59 -		2	6	1136	Z	57	3328	3 '	5	5994
i	9	6670	1	60	487#	2	7	2265	Z	58	3313	3	6	6813
i	10	6251	ī	61	61	2	8	4650	2	-59	2472	3	7	5334
1	iı	6962	ī	62	2743	2	9	6244	2	60	68	3	8	4792
i	12	6590	1	63	1263+	2	10	6430	2	61	26*	3	9	5159
į.	13	4197	ī	64	1101*	Z	11	4881	2	62	2747	3	10	4491
ĩ	14	4174	1	65	3461	Z -	12	4851	2	63	325	3	11	5072
1	15	6311	ī	66	254#	2	13	532	2	64	331	3	12	5238
ī	16	3590	1	67	1844	Z	14	595#	2	65	3688	3	13	2884
1	17	3814	ī	68	3321*	Z	15	3529	2	66	2086*	3	14	-4597
ī	18	1953	1	69	2122*	2	16	3456	2	67	2913	3	15	5421
ī.		860-				2_				68-	2790*		- 16-	-1126-
1	20	4553	1	71	2578×	2	18.	2077	, 2	69	2067#	3	17	1382
ī	21	1705	1	72	1965	2	19	2125	×2	70	1976*	3	18	362
ī	22	30 30	1	73	3895	2	20	3919	2	71	45	3	19	3498*
1	23	3014	Ĩ	74	1444	Z	21	814	Z	72		3	20	1921
ī	24	3186	1	75	1137#	2	22	3333	2	173	3146	3	21	576*
ī	25	647	1	76	2290	2	23	3620	Z	74	3270	3.	32	1026
ī	Z6	1269	1	77	1613	Z	24	1834	· 2	75	129	3	23	3391
ī	27	510	1	78	577	· 2	25	2823	2	-76	494	3	24	3160
ī	28	62≄	3	. 79	1862*	2	26	737	2	77	2198	3	25	340*
ï	29	1469	1	80	101 -	- 2	27	343≈	2	78	1094	3	26	1274*
1	30	3307≠	1	81	654*	- 2	28	865	2	79	299*	3	27	1126
1	31	2567*	1	82	1351*	2	29	657	2	80	378*	3	28	376 346
1	32	1853*	1	83	4108	2	30	2303*	2	81	1139	3	29	3029÷
1	33	833*	1	84	2520*	2	31	1700	2	82	330*	3	30	39704
ï	34	1042	1	85	1498	2	32	3157#	2	83	3232	3	31 32	342*
1	· 35	3195	1	86	2822	2	33	885*	2	84	1118*	3	33	3184
1	36	894	1	87	837	2	34	1547	2	85 86	2858 4014	3	34	798
1	37	107	1	88	2662	2	35	116	2		2417	3	35	4954
1	38	586 *		89	2500*	2	36	446*	2	87 88	3844	3	36	954
1	39	1622	1	90	1648	2	37	1051*		89	1275	3	+ 37	342
1	40	3729	1	91	1356*	Z	38	2236*	2 2	90	1509	3	38	1335
1	41	1081*		92	403*	2	39	1123	2	91	365*	3	39	1149
1	42	1054)	93	2322*	2	40	2586		92	45	3	40	744
1	43	385	1	94	1410*	2	41	121*	2	93	2572*		- 41	1528
1	- 44	2167	1	95	2375*		42	2433 43º		94	918+			2990
1	45	26	1	96	1679*		43		2	95	2848*		43	696
1	-46		1	97	1373*		44	1451	ź	96	1383	3	44	1766
1	. 47		1	98	477*		45	2456 1028	2	97	829	3	45	1245
1	48		1	99	1662	2	46	1028		98	647*		46	1059
1	49		1	100.	1554	2	47		2	~ 99	377*			1807
1	50			101	2497	2			2	100	2251	3		1496
3	51	99	1	102	4339	2	49	4007		100		-		

•Designates a minus value

WADC TR 59-505

		Corr.			Corr.			Corr.			Corr.			Corr.
Var.		Coel.	Var,		Coel.		Var.	Coel.	Var.	Var.	Coel.	Var.	Var.	Coel.
(A)	(B)	(7)	<u>(A)</u>	(B)	<u>(r)</u>	<u>(A)</u>	(B)	(5)	<u>(A)</u>	(B)	(r)	<u>(A)</u>	<u>(B)</u>	(1)
3	49	1378	3	103	147*	4	55	197	5	8	4903	5	6Z	3197
3		2570#	3	104	1932	4	56	1715*	. 5	9	6374	5	63	1217
3	51	331				. 4	57	1971	5	10	6133	5	64	78
3	52	194	4	- 4	10000	4	58	4221	5	11	5622	· 5	65	3437
3	53	1722	-4	5	6125	4	59	4731	5	12	4159	5	66	690*
3	54	1370	4	6	7247	4	60	1086	5	13	1434	5	67	2130
3	55	1274*	4	7	6606	. 4	61	1374	5	14	1067	5	68	3560*
. 3	56	1017+	4	. 8	6561	4	62	4509	5	15	4832	5	69	2375*
3	57	58	4	9	5059	. 4	63	321	5	. 16	3725	5	70	1879*
3	58	2456	. 4	10	6243	4	64	269*	5	17	3697	5	71	746*
3	59	2524 886*	4	11	8297	4	65	4230	5	18	2530	5	72	769
3	60 61 .		4	12	6520	.4	66 67	1409 74*	5 5	19	429	5	73	3374
3	62	<u>646</u> . 1820	4	13	5224	4	68	30 70*	-	20	4457	5	74	2389
3	63	1823¢	-	14	4761	.4	69	2160*	5 5	21	674	5	75	666*
3	64	3133*	4	15 16	6372	4	70	376	5	22 23	4098 3324	5 5	76	789
3	15	1601	4	16	3480	4.	71	3153*	5	23 24	3420	5	77 78	3320 757*
3	66	314	4	18	3688 1878	4	72	2531	5	25	2280	5	78 79	757 - 272≠
ŝ	67	1140	4	19	10/0 63#	4	73	5505	5	26	377	5	80	164
-	68	2876=	4	20	3935	4	74	1879	5	27	1598	5	81	99+
3	69	1267=	4	21	2328	4	75	1520*	5	28	2195	5	82	434*
3	70	554	4	22	1265	4	76	1825	5	29	550	5	83	3325
3	71	2770*	4	23	3519	4	77	1117	5	30	2570*	5	84	11*
3	72	3439	4	24	2829	4	78	1524*	5	31	735*	5	85	1705
3	73	2426	- 4	25	1072	4	79	3010*	5 -	32	2579¢	5	86	4446
3	74	222	4	26	31*	4	80	1776≠	5	33	189*	5	87	1398
3	75	205Z≑	4	27	683	4	81	272*	5	34	2012	5	88	2831 .
3	76	712	4	28	905≠	4	82	1938+	-5	35	1019	5	89	507*
- 3	77	1266	4	29	1064	4	83	5620	5	36	171*	5	90	2522
3	78	1207≠	4	30	1509*	4	84	2012*	5	37	846	5	- 91	26 93#
3	79	1373=	4	31	2 912≄	4	85	665*	5	38	1813*	5	92	1968*
3	80	302	4	32	841≑	. 4	86	2896	5	39	1425	5	93	1783*
3	81	1189*	4	-33	1461*	4 -	87	2095	- 5	40	3695	5	94 -	2874*
3	82	539	4	34	2150	4	. 88 89	773 2998*	5 5	41 42	218	5 5	95 96	4852*
3	83	2652	4	35	3298	4	89 90	877	5	43	1659 1105	· 5	90 97	87* 1922*
3	84 85	1226÷ 431		36 37	1273	4	91	2518*	5	44	2386	5	71 98	1922-
3	86	2026	4	-38	839≑ 997	4.1	92	1245	5	45	2752	5	. 99	1656
3	87	315*	- 4	39	1515	4	- 93	1270+	5	46	2190	5	100	2198
3	88	142	4	40	3286	4	94	1484*	5	47	253	5	101	2738
3	89	3828*	4	41	721	4	95	3433*	5	48	1486	5	102	4540
3	90	1357	4	42	1820	4	.96	1219*	5	49	3568	5	103	1544
3	91	2009*	4	43	193*	4	97	438*	5	50	97	5	104	1358=
3	92	727*	4	44	3835	4	98	574	5	51	1510			
3	93	707*	4 -	45	360*	4	99	1817	5	52	1771	6	6	10000
3 -	94	2940 *	4	46	12	4	100	571	5	53	2998	6	7	6807
3	95	3142*	4	47	1787	4	101	2349	5	54	1914	6	-8	5643
3	96	1888*	4	48	3730	4	102	5127	5	55	1514	. 6	9.	2743
3 "	97	2001*	4	49	2931	4	103	1316 *	5	56	161*	6	10	3112
3	- 98	670*	. 4	50	936*	4	104	388**	5 5	57	2649	- 6 - 6	11	6576
3	99	2723	4	- 51	465	5	5	10000	5	58 59	3778 3305	6	· 12 13	4421 5031
	100	1771	•	52	112*	5	6	4470	5	60	285*	• 6	13	5031 6045
3	101	479*	•	53	1768	5	7	4326	5	61	203-	6	15	6031
3	105	1973	4	54	962	3	•		3	~*		•		

WADC TR 59-505

. 110

_			-	-							•				
		Corr.			Corr.			Corr,			Corr,			Corr,	
. Var		Coel.	Var.				·Var,	Coel.	Var.	Var.		Var.	Var.	Coel,	
<u>(A)</u>	(B)	<u>(r)</u>	<u>(A)</u>	<u>(B)</u>	(r)	(A)	(13)	(r)	<u>(A)</u>	(B)	(r)	(A)	(B)	(r)	
- 6	16	1880	6	70	2130	7	25	1681+	7	77	3718+	5	35	1086	
. 6	17	2487	6	, 71	4656#	, 7 ·	26	1 97#	7	80	1159*		56	349#	
6	18	283	6	,72	3658	7	27	41*	7	81	896#		37	1789#	;
6	19	468#	6	73	4307	7	28	105	7	82	2420*	8	38	454#	
. 6	20	1767	6	74	214*	7	29	2203	7	83	5332	8	39	160+	
. 6	21	1757	. 6	75	16704	7	30	1335*	- 7	84	2668*	8	40	4876	
6	22 23	410 1724	6	76	1936	7	31	3553+	7	85	534	8	41	22+	
ĕ	24	4432	6	77 78	1693	7	32	594	7	86	2139	8	42	2852	
6	25	531*	6.	79	25184	7	33	** 516 4	7	87	1481	8	43	1900	
· 6	26	304#	6	80	2364#	7	34	1232	7.	88	194*	8	44	1477	
6	27.	150*	6	81	J1 91*	7		1772	7	.89	5291#	5	45	392	
. 6	28	. 1147*	6	82	1603#	7	36	948	7	90	3169	8	46	643*	
6	29	661*	6	83	2356#	7	37	850*	7	· 91 ′	3079#	8	47	866	
6	30	2420*	6	84	4347	7	38	1753	. 7	92	2037*	8	48	1483	
6	31	5330*	6	85	. 748*	7	39	2764	7	93	1263*	- 8	49	4587	
6	32	883*	6		1487# 53#	7	40	3353	- 7	94	499*	8	50	900 <i>*</i>	
6	33	1037*	6	- 80 87		- 7	41	60	- 7	95	-1928*	8	51	1686	
6	. 34	348	6	88	66*	~ 7	42	433*	7	96	1282*	. 8	52	1858	
6	35	3010	6	89	1104≈ 4302≈	7	43	182	7	97	2841*	8	53	2376	
6	36	823	6	90	4302÷ 1519	.7 7	44	2230	7	98	234]*	8	54	Z055	
6	37	513*	6	91	1519 2696#		45	1091*	7	99	1575	8	55	324	
6	38	670	6	92	466*	777	46	729*	7	100	1014	8	56	705+	· · .
6	39	279	6.	93	1109	7	47 - 48	4253 2665	7	101	2237	8	57	1969	
6	40	1952	6	94	1113#	7.	49	2005	77	102 103	4594	8	58	3199	
6	41	431	6	95	2163*	7	1 7 50	348	7	104	125	3	5-	3209	
6	42	99*	6	96	2828×	7	51	1145	•	104	695	8	60	1766	
6	43	91	6	97	3404≈	7	52	1034	8	~ 8	10000	-8 -8	61	154*	
6	44	2119	6	98	1633=	7	53	1644	8	. 9	5328	8	62 63	3486	
6	- 45	1323*	6	99	2950	7	54	1343	8	10	3054	8	64	992* 999	
6	46	155	6	100	144	7	55	1057	8	- 11	6019	5	65	4911	
6	47	2134	6	101	749	7	56	1733>	8	12	7251	8	66	=911 250≈	•
6	48	2205	6	102	2829	7	57	2666	8	13	3551	8	67	1840	
6	49	3186	6	103	478	7	58	2718	8	14	4518	8	68	1637*	. .
6	50	575*	6	104	2656	7	59	2573	8	15	5637	8	69	2785*	
6	51	623				7	60	2222	8	16	4871	8	70	1201	
6	52	1299	7	7	10000	7	61	379	8	17	4260	8.	71	3178*	
6	53	2301	7	8	5452	7	62	2647	8	18	3560	8	72	1017	•••
6	54 .	1645	7	9	4970	. 7	63	399	8	19	1586	8	73	4986	
6 3	55	208*	7	10	4166	.7	64	130*	8	20	4422	8	74	2564	1.1.1
6	56	467=	7	11	5744	7	65	4350	8	21	2085	8	75	134+	
6	57	38	7	12	5662	7	66	1119	8	22	835	8_*	76	3404	
6	58	2516	7	13	4518	7	67	341*	8	23	3256	8	77	3460	
6	59	4175	7	14	4864	7	68	1021=	8	24	3444	8	78	1274	
6	60	1541	7	15	5731	7	69	1619*	8	25	1953	8	79	1705*	· •••
6	61	2291	7	16	2902	7	70	2728	8	26	1291	8	80	788	
6	62	3594	7		3614	7	71	2031*	8	27	377#	8	81	1172*	
6	63	111	7	10	010	7	72	1166	8	28	1144	8	82	3361*	
6	64 45	468+	7	19	381	7	73	5272	8	29	1727	8	83	5094	
6	65 66	2277	7	20	3041 2925	7	74	2855	8	30	3383*	8	84	5286*	
6	67	1780 550	- 7 - 7	21	3835	7	75	403	8	31	2514*	8	85	1361	
6	68	1232*	7	22 23	2368	7	76	4009	8	32	2067*	8	86	344	
• 2	69	609+	7	23 24	1692	7	77	552	8	33	2291*	8	87	88*	•.
	47	947-	•	67	3510	7	78	894	8	34	945	· 18	88	2496	

							•									· •	•	
			1.1			Corr.			Corr.			Corr.			Corr.	<u> </u>		Corr.
	1.1.1			Var.	Var.	Coef.	Var,	Var.	Coel,	Var.	Var.	Coel,	Var.	Var.		Var.	Var.	Coel.
	•	••		<u>(A)</u>	(B)	(r)	(A)	(B)	(r)	(A)	(B)	(r)	(A)	(B)	(r)	(A)	(8)	<u>(ŕ)</u>
		•	,	8	89	3314+	9	46	1306	9	100	1676	10	58	3230	11	17	2554
				8	90	· 146.	9	47	1965	. 9	101	3051	10	59	4474	11	18	996 [°]
•				8	91	901+	9	- 48 -	1516	9	102	5535	10	60	318#	- 11	19	241
	1 -		•	8	92	633 、	9	49	779	9	103	460	10	61.	2818	11	20	1913
					93	3949*	9	50	4734	9	104	2570*	10	6Z	3823	11	21	2236
	:			8	94	727*	9	51	1022				10	63	333	11	22	6Z
	•			8	95	1283#	9	52	1367	10	10	10000	10	64	1314#	11.	23	3188
				8	. 96	806+	9	53	1198	10	11	5060	- 10	65	2653	11	24	1923
				8	97	2151*	9	54	353	- 10	12	4309	10	66	2*	11	25	639
				8	98	1568+	9	55	256*	10	13	2061	10	67	137*	11	26	212
				8	. 99	3715	9	56	8	10	14	1821	10	68	3015*	11	27	1343*
					100	925×	9	57	4297	10	15	3503	10	69	262*	11	28	1460*
			•	8	101	3711	. 9	58	3336	10	16	809	10	70	- 43#	11	29	2055 -
				5.	102	5498	9.	59	2132	10	17	2557	10	7,1	2733*	11	30	1445*
				8	103	Z	9	60	1176	10	18	1492*	10	72	2458	11	31	2335*
		· · ·	·····		_104	1519#	9	61	363*	10	19	733	10	73	4650	11	32	1106*
				~	~	10000	9	62 ()	2107	· 10	20	3596	10	74	2042	11	33	1708+
				9 9	9	10000 4734	9	63	100*	10	21	1306	10	75	197*	11	34	3621
			•	9	. 10		9	64	387*	10	22	4163	10	76	2080	11	35	1391
				9	11	4198	9	65	-1538	10	23	2107	10	77	2076*	11	36	2498
				9	ļZ	5773	9	66	1465*	10	24	86*	10	78	552	11	37	663
				9	13	1185	9	67	2434	10	25	797*	10	79	1076*	11	38	2348
			• •••	9	14 15	2020 3428	9 9	68 60	2173*	10	26	146*	10	80	2055	11	39	2767
				9	15	- 4618	9	69 <u>·</u>	2185*	10	27	2392*	10	81	1502	11	40	3989
				9	17	4547	9	70 71	312* 277	10	28	108*	10	82	1031¢	11	41	1940
				9	. 18	3092	9	72	277 1971≠	10	29 30	1420*	10	83	4912		42	2685
			•	9	19	1910	9	73	3745	10 10	31	3105* 285	10	84	487*	11	43	1497 4602
			· -	ģ,	20	5043	9	74	4216	10	32	1725*	10 10	85 86	18	11	44	4691
			-	ģ.	21	1416	.9	75	1640	10	33	1327*	10		3045	11	45	377 230
+				,	22	4091	.7	76	57	10	34	543		87	1555	11	46 47	2350
				ģ	23	3788	9	77	3194	10	35	1842	10 10	88 89	1731	11	48	4905
				ģ	24	3045	9	78	1330	10	36	2552	10	90	617 1527	-11	49	3020
				ģ	25	1285	9	79	830*	10	37	2455*	10	91	1547 849≎	11	50	1128*
	-			ģ	26	478*	ģ	80	1782	10	38	11#	10	92	201*	11	51	374
			•-	9-	. 27.	424*	9	81	2136	10	39	1524	10	93	1911*	11	52	147*
•	·•• · · · ·		•	9	28	4155	9	82	2200¢	10	40	57*	10	94	3951*	11	53	2129
•	•			ģ.	29	2364	· 9	83	3649	10	- 41	2482*	10	.95	5015*	11	54	1139
•			•	9	30	3957=	ģ	84	164	10	42	162	10	96	3353*	ii	55	259
	. 1		-	9	31	960×	ģ	85	2028	10	43	1639#	10	97	2202*	11	56	299*
		-		9	32	3380*	ģ	86	4448	10	44	196≠	10	98	743	11	57	3168
				9	33	1150#	9	87	1252*	10	45	554×	.10	99	_ 355*	11	58	4667
				9	34	1344	9	88	2799	10	46	1075	10	100	1097	.11	59	5227
•				9	35	2392	9	89	2126≎	10	47	2952	10	101	1769	11	60	2258
				9	36	191*	9	90	681	10	48	754	10	102	4415	11	61	2206
. '	,			9	37	146*.	9	91	951	10	49	2679	10	103	1016	11	62	5531
				9	38	641*	9	92	95 4 *	10	50	1361#	10	104	545*	. 11	63	1029
				9	39	1782	· 9	93	2826*	10	51	814*				11	64	2118
				. 9	40	2182	9	94	143	10	52	409	11	11	10000	11	65	4321
•				9	41	143*	9	95	1288*	10	53	638	11	12	6236	11	66	968
				9.	42	596*	9	96	1585	10	54	957*	11	13	4596	11	67	658
· ·				9	43	561*	9	97	631+	10	55	2773	11	14	5453	11	68	2486*
		, ·••	• •	9	44	2975	9	98	2617*	10	56	2188*	11	15	5549	11	69	1536*
				9	45	1270	- 9	99	1540	10	57	2124	11	16	2312	ù	7Ò	158*

¥

WADC TR 59-505

_	· ·					_			:					• •	
		Corr.			Corr.			Corr.			Corr,				•
	.Var.		Var.	-			. Var,	Coel.		. Var.			. Var,	Corr. Coel.	-
<u>(A)</u>	(B)		<u>(A)</u>	(B)	<u>(r)</u>	<u>(A)</u>	<u>(B)</u>	- (1)-		• (B)		- (A)		(r)	
11	71	3082*	12	31	2373+		85	1339	13	-46	264+		100	150	۰.
11 11	72	2957	12	32	146	12	86	974	13	47	236+		101	72	
11	73 74	6333	12	33	1277*		87	0	13	48	4664	13	102	193	
11	75	2496	12	34	325	12	88	1158	13	49	927	. 13	103	2553	
11	76	2686* 1475	12 12	35 36	783	12	89	2551*	13	50	935	13	104	414+	
ii ii	77	1374	12	37	489 3844*	12	90	687	13	51	461		• .		
ii	78	1625*	12	38	2657*	12	91	347*	13	52	545	14	- 34	10000	
11	79	2729*	12	39	20577	12	92	0	13	53	100+	14	15	4213	
11	80	1073+	12	40	2060	12 12	93	6371*	13	54	1055*	14	16	201*	
11	81	142*	12	41	565	12	94	962*	13	55.	2153*	14	17	1058	
11	82	2933*	12	42	249¢	12	95 96	1091*	13	56	2649*	14	18	2222*	
11	83	6378	12	. 43	2246	12	90 97	558*	, 13	57	1702*	14.	19	885*	
11	84	2021+	12	44	2110	12	98	837* 405*	13	58	1823	- 14	20 -	950	·
11	85	2795+	12	45	181	12	99	2582	13	59	2606	14	21	1228	
11	86	2638	12	46	978	12	100	612+	13	60	1716	14	22	2117*	
11	87	1638	12	47	1887	12	101	2008	13	61	3352	14	23	1152	
11	88	1796	12	48	3296	12	10Z	4327	13	62 63	1881	14	24	1423	
11	89	2 353+	.12	49	3631	12	103	1603*	13	64	512	14	25	322.4*	
11	90	608*	12	50	80	12	104	4743+	13	65	1202 286*	14 14	26 27	2311+	
11	91	641*	12	51	1944				13	66	1724	14	27 28	2997*	
 11	92	3011	12	52	1127	13	13	10000	13	67	62+	14	29	84 * 1866*	
11	93	1522*	12	53	1230	13	14	5054	13	68	387*	14	30	679*	
11	94	383*	12	54	1477	13	15	3132	13	69	1794	14	31	3123*	
11	95	2340*	12	55	1655 ‡	13	16	644	13	70	534	14	32	1276	
11	96	709*	12	56	150**	13	17 :	1282	13	71	3476+	14	33	189*	
11	97	475*	12	57	3174	13	18	753*	13	72		- 14	34	659+	
11 11	98 99	97 -	12	58	3081	13	19	1214*	13	73	3041	_14_	.35	1513	_
	100	1122 820	12	59	2988	13	20	Z489	13	74	2160+	14	36	715+	
11	101	2100	12	60	1998	13 -	21	398	13	75	. 0	14	37	897*	
	102	4753	12 12	61 62	337≑	13	22	1967#	13	76	2987	14	38	1267	
	103	498	12	63	2976	13	23	2277	13	77	65	14	39	227	-
	104	2156=	12	64	172≠ 1619*	13	24	1534	13	78	1182*	14	40	2949	
			12	65	4868	13 13	25 26	1276+	13	79	2860*	14	41	889*	
12	12	10000	12	66	1197*	13	20 27	278	13	80	476+	14	42	660	
12	13	2592	12	67	421	13	28	635 2052≄	13	81	768+	14	43	2080	
12	14	3458	12	68	1290#	13	29	1421*	13_ 13	82 83	1937*	14	44	1705	
12	15	4236	12	69		-13	30	1505	13	84	2751	14 14	45	2983*	
12	16	2830	12	70	637	13	31	1620*	13	85	3050 * 947*	14	46 47	1090*	1.2
12	17	2708	12	71	593×	13	32	2125	13	86	1088	14	48 -	2969 993	
12	18	1592	12	. 72 .	2528	13 .	33	1774	13	87	1649*	14	49	484	
12	19	835	12	73	4247	13	34	1966	13	88	334*	14	50	980 *	
12	20	2789	12	74	3758	13 `	35	1549	13	89	2547*	24	51	1126*	
12 .	21	2469	12	75	390*	13	36	2004	13	90	718	14	52	86+	
12	22	547	12	76	764	13	37	568*	13	91	1864*	14	53	78	
12	23	1846 _	12	77	1661	13	38	2987	13	92	1840	14	54	978*	
12	24	2561	12	78	3648	13	39	53*	13	93	59-	14	55	1485+	
12	25	659	12	79	1234+	13	40	3100	13	94	730	14	56	1866*	
12 12	26 27	1948* 1369*	12 12	80 81	758	13	41	1444	13	25	274	14		1716	
12	28	691+	12	82	774*	13	42 .	1848	13	96	2823+	14		1798 -	•
	29 29	3917	15	83	1499* 4475	13 13	43	+22	13	97	19894	14		3205	
12	30	1846*	12	84		13	44 45	2311 1158*	13	98	481	14	60	696	
								4470~	13	99	974	14	61 1	1263	
							••								

							· •,								
		Corr.	<u> </u>		Corr.			Corr,	_		Corr.			Corr.	
Var.	Var.	Coef.	Var.	Var.	Coel.	Var,	Var.		Var,	Var,	Coef,	Yar,	Var.	Coel.	
(A)	(B)	(1)	(A)	(B)	(+)	(A)	(B)		· (A)	(B)	(r)	(Å)	(B)	(r)	
74	62	3354	15	25	483	15	79	3003+	16	43	Z086	16	97	130#	
14	63	405	15	26	824	15	80	2243*	16	44	3967	16	91 [.] 98	1879#	
14	64	110	15	27	738#	15	81	2192#	16	45	42.44	16	99	926+	
14	65	1904	15	28	1444	35	82	47	16	46	1900	16	100	918*	
- 14	66	295*	15	29	1032	15	83	4041	16	47	1455	- 16	101	5150	
14	67	600	15	30	2048*	15	84	3154+	16	48	2264	16	102	4435	
14	68	1226*	15	31	1438+	15	85	605	16	49	301*	16	103	Z682*	•
14	69	956*	1,5	32	833*	15	86	1193	16	50	63	16	104	2254+	
14	70	1994	15	33	• 1657*	15	87	942*	16	51	790+	•	-		
14	71	2438*	15	34	688	15	88	665	16	52	1864*	17	17	10000	
14	72	2325	15	35	929	15	89	3160+	16	53	1265#	_17_	18	4254	;
. 14 -		3425	15.	36	945	- 15	90	2974	16	54	1416#	17	19	5659	•
14	74	1700	15	. 37.	1083+	15	. 91-	3182+	16	55	1109#	17	20	8097-	
14	75	1385	15	38	467	15 -	92	34*	16	56	1380	17	21	6438	
14	76	3991	15 15	39 40	1033*	15	93	1810	16	57	1178	17	22	5410	
14	77	1016	15	41,	4194	15	94	617+	16	58	3270	17	23	3827	
14	78 79	2237* 3059*	15	42	165* 3394	15	95	1244+	16	59	1681	17	24	6080	
14 14	80	1369≎	15	43	32	15 15	96	1633*	16	60	1102	17	25	1365	
14	81	1084*	15	44	1651	15	97 98	963+	16	61 -	165#	17	26	2755	
14	82	1616*	15	45	804	15	99	592	16	62	2615	37	Z7	1350	
14	83	3678	15 :	46	118	15	100	1797 1180	16	63	1619	17	28	2723	
14	84	2944*	15	47	553	15	101	3825	16 16	64 4 c	228+	17	29	561	
14	85	3546*	15	48	3079	15	102	3507	16	65 66	4629	17 17	30	144*	
14	86	2707*	15	49	2557	15	103	1807	16	67	1656 901	17	31 32	28* 423*	
14	87	102	15	50	3422+	15	104	2441	16	68	2180+	17	33	1094*	
14	88	1633*	15	5i	1583+				16	69	1636+	17	34	3782	
14	89	5344*	15	52	361	16	16	10000	16	70	350	17	35	670	
14	90	216	15	53	1075	16	17	8909	16	71	1796+	17	36	216	
14	91	514*	15	54	505	16	18	7856	16	72	412+	17	37	1129	
14	92	1885	15	55	65+	16	19	4399	16	73	3618	17	38	33	
14	93	1571	15	56	2032*	16	20	7885	16	74 -	1340	17	39	409	
14	94	1357	15	57	1931	16	21	6302	16	75	638+	.17	40	2454	
14	95	1306 325*	15 15	58 59	2302 3261	16	22	4520-	-16	76	725	77	41	2325	
14 14	96 97	2176*	15	57 60	1630	.16 16	23 24	3187 5807	16	77	3414	17	42	1127	
14	98 98	1460*	15	61	83*	16	25	4713	16 16	78 79	38*	17 17	43	2192	
14	99	1096	15	62	2678	16	26	3308	16	80	562* 1184*	17	44 45	3860	
14	100	1808*	15	63	1057*	16	27	3314	16	81 -	1248	17	46	<u>3100</u> 3447	
14	101	1070+	15	64	369	16	28	4096	16	82	2577*	17	47	2968	
14	102	575	15	65	3070	16	-29-	- 3102	-16 ~	83	-3133	17	48	1688	
14	103	253*	15	66	1049*	16	30	361	16	84	1814*	17	49	959+	
14	104	644	15	67	1256	16	- 31	308*	16	85	2085	17	50	1088	
			15	68	• 922*	16	32	415+	16	86	2695	17	51	754+	
15	15	10000	15	69	2650*	16	33	1958+	16	87	798	17	52	1904+	
15	- 16	1808	15	-70 "	1098	16	34	4407	16	88	1037	17	53	1633+	
15	17	1001	15	71	2514*	16	35	83*	16	89	2450*	17	54	2358*	
15	18	2301	15	72	1927	16	36	770	16	90	2132	17	55	175+	
15	19	2855*	15	73	3614	16	37	1035	16	91	138+	17	56	1110	
15	20	980	15	74 75	1851 630	16 16	38 39	126+	16	92	3578*	17	57	1450	
. 15	21	992	_15 _15	75	2029	16	- 39 - 40	408* 3795	16	93	2036*	17	58	2901	
15	22	1733 456	15	77	1660	16	41	3100	16	94	751	17	59	1351	
15	23 24	2814	15	78	34*	16	42	2308	16 16	95 95	607*	17	60	1046	•
15	67	5414			34.			8-44	10	96	2196	17	61	1548	

のななないのいました。

WADC TR 59-505

					۰.		•	:	<i>.</i>												
							•							<i>.</i> :							
		,										• .		•						,	
			•																		
•			•					Corr.			Curr.			Cutt.			Corr.			Corr.	
						Var.	Var.	Coel.	Var.	Var,	Cuel.	Var,	Var.	Coel.	Var.	Var.	Coel,	Var.	Var.		
						(A)	(B)	(r)	(A)	<u>(B)</u>	(1)	(A)	(B)	(r)	(A)	(B)	(r)	(A)-	(B)	· (r)	
					-	17	62 [·]	2851	18	28	4860	18	82	1117*	17	47	1217	12	103	1276#	•
						17	63	1273	18	29	52 38	18	83	1198	19	50	5943	19	104	2996"	
	•					17	64	835*	18	30	602	. 18	84	1043*	12	51	2173	.,	104	6170	
			÷., *			17	65	3822	18	31	684*	18	85	695	12	52	1513	20	20.	10000	
			•			17	66	1996	18	32	500*	18	86	2057	17	53	1017	20	21	10000	
					. m'	17	67	480	18	33	2525*	18	87	156	12	54	1318	20	22	4848 482 s	
	•			-		17	68	1853#	18	34	3853	. 18	88	404	19	55	1058	20	23	2882	
	-					17	69	600	18	- 35	7344	18 -	89	751*	12	.56	1414	20	24	3710	-
						17	70	1174	.18	36	1760	18	90	1510	12	57	2822	20	25	3282	
			•			17	71	1941*	18	37	683	18	21	60#	19	58	212#	20	26	1915	
				•		17	72	354	- 18	38	51	18	9Z	2724=	12	59	172*	20	27	2366	
•						17	73	4007	18	32	12134	18	93	2529*	12	60	668	20	28	2530	•
			•			17	74	1583	18	40	3911	18	. 94	1115	19	61	203#	20	29	222	
• • •			4 N N			17	75	1134*	18	41	2822	18	95	405	19	62	223	20	30	348	
		•			•	17	76	2314	, 18	42	2883	18	36	2007	19	63	656	20	31	6	
						17	77	2293	18	43	637	18	97	800	19	64	3405	20	32	966	
÷	•	•				17	78	702	18	44	2551	. 18	98	.48-	19	65	1703	20	33	833	
• `						17	79	885×	18	- 45	4397	18	92	673#	19	66	239	20	34	2694	
		• .				17	80	1498-	18	46	297-	18	100	1001*	19	67	319	20	35	561	
			,		÷.,	17	81	964	18	47	875	18	101	4444	19	68	552	20	36	352*	
	•					17	8Z	302 3¢	18	48	2014	18	ICZ	3202	19	69	102*	20	37	1330*	·
						17	83	3602	18	47	473	18	103	424≎	19	70	2029	20	38	1171*	
						17 .	84	1479¢	18	50	1522.4	18	104	15630	19	71	1355	20	-39	793≄	
						17-	85	2458	18	51	647*			÷	19	72	26550	20	40	3162	
						17	- 86	2706	_ 18	52	1066#	19	17	10000	19	73	1717	20	41	1269	
						17.	87	980	18	53	334*	19	20	3561	19	74	2065	20	42	2117	
	• •					17	88	1342	18	54	237	19	21	3590	19	75	669	20	43	2012	
				•		17	89	277 8÷	18	55	1640**	19	22.	2351	19	76	46	20	44	1973	
			,			17	90	2029	18	56	1338	17	.23	3150	19	77	602	20	45	3678	
						17	91	166≉	18	57	130	19	24	3356	19	78	1490	20	46	1089	
						17	92	3165*	18	58	2556	19	25	11*	19	79	524	Z0	47	787	
	<u> </u>					17	93	1017*	18	59	-1426	19	Z6	1111*	19	80	108	20	.48	1487	
						17	94	168	18	60	467	19	27	635#	19	81	734	20	49	96	
						17	95	1382*	18	61	2 4 28¢	17	28	1891	19	82	3395*	20	50	553	
						17	-96-		18	62	1183	19	22	417	19	83	1424	- 20	51	858÷	
					•	17	97	871*	18	63	1370	19	30	1141*	19	84	68*	20	52	1676 #	
	· ·					17	98	2597*	18	64	599	19	31	1718	19	85	2287	20	53	2 229#	
			-			17	99	841*	18.	65	3907	13	32	3286*	19	86	1179	20	54	2726*	
						17	100	570*	18	66	1115	19	33	1144*	19	87	1826	-		327	
			·	<u>.</u>		17	101	4321	18	67	780	19	34			88			56	1925	
	4					17	102	4078	18	68	2020≈	:19	35	302*	19	89	603	20	57	977	
	4.72					17	103	3636*	18	69	4 002≈	19	36	1771-	19	90 0 0	919*	20	58	2323	
	-					17	104	2009¢	18	70	804*	19	37	193	19	91	1737	20	59	1983	
								10000	18	71	2233*	19	38	417	19	92	1202*	20	60	48*	
						18	18	10000	18	72	1173*	17	39	707*	19	93	1328*	20	61	519	
	•					18 18	19	1045 4776	18	73 74	1631	19	40	296	19 19	94 95	906 11040	20	62	2244	
				•			20	3971	18	74	179 393	19	41	121*	19	95 96	1304* 1623	20	63 63	1933	
•			*•			18 18	21 22	2289	18	76		19	42	1622	19	90 97	1025	20	64 45	-2114*	
	· •			•		18	23	2289 989	18 18		.2045+	19	43	· 55	19	97 98	1264* 2851*	20	65 66	3051 616	
						18	23	3062	18	77 78	3354 608	19	44	383* 242	19	99 99	1522	20	67	. 1199	
						10 18	25	3062 7454	18 19	78 79		19	45	242 1680	19	100	681	20	· 68	2212*	
•						18 19	-26	3236	18	80	99 163*	19	46	2773	19	101	3033	20	69	2212*	
								5017		81		19	47		••			20			
						- 18 -					1460	19	48	671¢	10	102	3110	20	70	666	

					· .						•		÷ 1		
	<u> </u>		Corr.			Corr.		·	Corr.			Corr.			Corr.
	Var.	Var.	Coef.	Var.	Var.	Cocf.	Var.	Var.	Coel.	Var.	Var,	Coel.	Var.	Var,	Coel.
	· (A)	(B)	(r)	(A)	(B)	(r)	(A)	(B)	(r)	(A)	(B)	(7)	(A)	(B)	(r)
	20	71	17017	21	40	3234	21	94	2661	22	64	1490*	23	35	3043
	20	72	832*	21	41	347+	21	25	.972	22	65	2611	23	36	1551
	20	73	3481	21	42	1782	21	96	825	22	66	259*	23	37	289
	20	74	1420	21	43	1080*	21	97	798	22	67	1381	23	38	312*
•	20	75	467	21	44	2156	21	98	258	22	68	551#	23	39	2279
	20	76	2264	21	45	2593	21	99	1660*	22	69	376	23	40	503*
	20	77	2784	Z1	46	293	21	100	1216+	22	70	1366	23	41	3666
	20	78	526*	21	47	2159	21	101	3257	22	71	7 7¢	23	42	2824*
	20	79	1055*	21	48	1576	21	102	2545	22	7Z	360*	23	43	2676 .
	20	80	558 ´	21	49	,1791**	21	103	4103*	22	73	2068	23	44	3501
-	20	81	2092	21	50	1377	21	104	434*	22	74	2684	23	45	617
	20	82	3222*	21	51	5*	_			22	75	614*	23	46	319
• •	.20	83-	. 3234.		52	1637*	Z2	22	10000	22	76	46	23	47	1405
	20	84	1641*	21	53	667*	22	23	399+	22	77	931	23	48	781
	- 20 20	85 e4	2374	21	54	766*	22	24	2472	22	78	542	23	49	1227
	20	86 87	2391 386#	21	55	170	22	25	8	22	79	1837*	23	50	982*
	20	88	1340	21	56	641 360	22 22	26 27	3556 544*	22 22	80	1255	23	51 57	232*
	20	.89	2089≎	21 21	57 58	3315	22	28	2605	22 22	81 82	686* 161*	23 23	52 53	2311* 324*
	20	.97	3686	21	59	1210	22	29	1263	22	83	2065	23	55	1071*
	20	91	530*	21	60	2790	22	30	1031*	22	84	1234	23	55	692*
	20	92	4335*	21	61	728	22	31	346	22	85	3396	23	56	699
	20	93	2577*	21	62	3696	22	32	1765≎	22	86	2469	23	57	30 *
	20	94	1062*	21	63	2294	22	33	150*	22	87	727¢	23	58	4422
	20	95	1874*	21	64	9 79*	22	34	3875	22	88	3147 **	23	59	2508
	20	96	1370	21	65	4496	22	35	1436	22	89	1337*	23	60	1051
	20	97	609*	21	66	3592	22	36	1812	22	90	1839	23	61	3139
	20	98	1162*	21	67	3139*	22	37	1141	22	91	114*	23	62	3678
	20	99	42.3*.	21	68	961×	22	38	1239	22	92	2 971≠	23	63	115*
	20	100	1591*	21	69	197*	22	39	19	22	93	_ 597*	23	64	1532*
	20	101	3878	-21	70	1189	22	40	963	22	94	2303*	23	65	1642
	20	102	3830	21	71	2110*	22	41	1715	22	95	1998*	23	66	1897
	20	103	304*	21	72	322	22	.42	1420	22	96	1752*	23	67	1211
	20	104	212 2*	21	73	3908	22	43	382	22	97 98	1560*	23	68	2849*
				21	74 75 ·	984 28⇒	22 22	44 45	2002 3839	22 22	99 99	435* 1873*	23	69	1559
	21	21	10000 2389	21 21	75	618	22	46	4437	22	100	133	23 23	70 71	1990 * 3350*
	21 21	22 23	2309 1169*	21	77	1328*	22	47	2026	22	101	4611	23	72	2249
	21	24	3600	21	78	1790	22	48	946	· 22	102	3634	23	73	3502
	21	25	1712	21	79	610*	22	49	332*	22	103	1353*	23	74	79
	21	26	1157	21	80	2258*	22	50	1525*	22	104	347≉	23	75	1578*
	21	27	1089	21	81	2671	22	51	2582*				23	76	2347
	21	28	786	21	82	2971×	22	52	238*	23	23	10000	23	77	2773
	21	29	2028	21	83	3422	22	53	1581*	23	24 .	1358	23	78	4093*
	21	30	685	21	84	589*	22	54	2446*	23	25	1871	23	79	392*
	21	31	692	21	85-	783*	22	55	1793	23	26	1429	23	80	461*
	21	32	1077	21	86	1246	22	56	145	23	27	1,411	23	81	2119
	21	33	2898÷	21	87	2013 -	22	57	2868	23	28	905	23	82	2186+
	21	34	2159	21	88	2374*	22	58	81	23	29	1881*	23	83	3348
	21				<u> </u>	<u>2040</u> ⇒	22	- 59	776	-23	30	226	23	84	1538*
	21	36	121	21	90	2860	22	60	559*	231	•	875*	23	85	84
	21	37	96	21	91	299+ 3426+	22	61	874	23	32 33	273 56	23	86 .	3141
	21	38	487	21	92 93`	3420+ 43+	22	62	130*-	23	34	2897	23	87 88	1255
	21	39	1386	21	73	-494 -	22	63	70*	63		&U71	23		1066

		-								· .	æ.			
Var.	Var.	Corr.			Corr.			Corr;			Corr.			Corr
(A)	(B)	Coel.	Var.	-		-	Var.	Coel.	Var.			Var.	Var.	Coel.
_		(r)	<u>(A)</u>	<u>(B)</u>	(r)	<u>(A)</u>	<u>(B)</u>	(7)	<u>(A)</u>	<u>(B)</u>	(r)	<u>(A)</u>	<u>(B)</u>	(7)
23	89	1715+	24	61 -	345*	25	- 34	1951	25	88	400*	26	6Z	13634
23	90	692*	24	62	271*	25	35	958+	25	89	625	26	63	318
23	91	1030+	24	63	369	25		140	25	90	983	26	64	5464
23 23	92 93	1538	24	64 65	1393*	25	37	1628*	25	- 91	365+	26	65	194
23	93 94	1588+ 1599+	24 24	- 66	1864 66+	25	38	2190*	25	92	1899*	26	66	689
23	95	2306*	24	67	1995	25	39	1258*	25	93	1973+	26	67	1453
23	.76	1698	24	68	1640*	25 25	40 41	2227	25	94	736	26	68	21154
23	97	876*	24	69	714*	25	42	2232	25 [.]	95	305	25	69	206
23	98	3232*	24	70	1427	25	43	2151 . 159≈	25 25	96	2099	26	70	491*
23	99	663+	24	71	682*	25	44	736	25	97 - 98	1271	26	71	2589+
23	100	1303	24	72	117	25	45	4225	25	. 99	800	26 26	72	697
Z 3	101	313*	24	73	1011	25	46	3498*	25	100	1355*	26	73	952*
23	102	2690	24	74	497	25	47	3094*	25	101	597* 3274	26 26	74	2171+
23	103	1850+	24	75	2361*	25	48	631	25	102	3030	26	75	1978+
23	104	1589*	24	76	1589	25	49	2159	25	103	905	26	76 77	2454
			24	77	3045	25	50	1349*	25	104	697*	26	- 78	267 2468*
24	24	10000	24	78	1314*	25	51	850+			•	26	79	698
24	25	193+	24	79	712*	25	52	2058*	26	26	10000	26	80	1922
24	26	2338	24	80	518°	25	53	394*	26	27	62.5	26	81	424*
24	27	1633	24	81	1634*	25	54	694	26	28	381*	26	82	621
24	28	1279	Z4	82	199	25	55	1292*	26	29	430	26	83	1951+
24	29	111	24	83	771	25	56	2732	26	30	1257+	26	84	896+
24	30	1010+	24	84	1752*	25	57	62.6*	26	31	2056+	26	85	461
24	31	2164*	24	85	3589	25	58	3318	26	32	83	26	86	164
24	32	161	24	86	1195	25	59	2633	26	33	1838+	26	87	1888*
24	33	631*	24	87	1184*	25	60	1925	26	34	4464	26	88	2185
24	34	963	Z4	88	21 2¢	25	61	34	26	35	594+	26	- 89	1183
24	35	745	24	89	3697≈	25	62	3179	26	-36	3787	26	90	1063
24	36	1275*	24	90	3930	25	63	1363	26	37	2809	26	91	202
24	37	2304	24	91	3008*	25	64	731*	26	38	3764	26	92	393*
24	38	269	24	92	3841*	25	65	2600	- 26	39	162*	26	93	671*
24	39 ⁻ 40	1771*	24	93	895	25	66	1243	26	40	1315	26	94	339
24 24	41	2594 942	24	94 95	200 825*	25 25	67 68	1463	26	41	2602	26	95	1280
23 24	42	238	24 24	96	544*	25	69	1361* 2042*	26	42	1863	26	96	2571*
24 24	43	2813	24	97	369*	25	70	2904*	26	43	1349	26	97	1267
24	44	336Z	24	98	847*	25	71	2409+	. <u>26</u> 26	44	2059	26	98	2060
24	45	554	24	99	2038	25 -	72	625*	26	45- 46	1646	26	99	Z032*
24	46	3573	24	100	723	25	73	2523	26	47	3100 197	26	100	2121*
24	47	2293	24	101	3319	25	74	627*	26	48	863	26 26	101	2018
24	48	1989	24	102	1424	25	75	546+	26	49	185	26	102 103	415+
24	49	1952	-24	103	1467+	25	-76	2979*	26	50	1910*	26	103	178 603*
24	50	1913	24	104	433	25	77	2798	26	51	1785*	20	104	-C00
24	51	1633				25	78	73	26	52	138*	27	27	10000
24	52	1658	25	25	10000	25	79	· 85	26	53	1092*	27	28	1371
24	53	1749	25	26.	101	25	80	199*	26	54	2691*	27	29	959
24	54	1184	25	27	4420	25	81	3024	26	55	2333	27	30	2359
24	55	2259+	25	28	2075	25	82	2365+	26	56	834*	27	31	1847*
24	56	560	25	29	2998	25	83	2219	26	57	2626*	.27	32	1283
24 🐪	57	620	25	30	2005	25 ୍	84	185	26	58	314	27	33	.975
24	58-	1296	25	31	966	25	85	211*	26	59	619*	27	34	436
24	59	312	25	32	640*	25	86	1209	26	60	2486*	27	35	955
24	60	349*	25	33	1265+	25	87	1774 .	26	61	122*	27	36	165*

÷.

117

j

			•								•			
		Corr.			Corr.			Corr,			Corr.			Corr.
Var.		.Coel,	Var.		Coel.	Var.	Var,	Coel,	Var.	Var.	Coel,	Var,	VAT.	- Coël.
<u>(A)</u>	(B)	(r)	<u>(A)</u>	<u>(B)</u>	<u>(r)</u>	<u>(A)</u>	(B)	(r)	(A)	(B)	(r) /	· (A)	(B)	(r)
27	37	2319	27	91	-3085#	Z8	67	279	29	44	2532	29	98	
27	38	308	27	92	2827*	28	68	334*	29	45	2440			835
27	. 39	8934	27	93	1123#	28	69	1192#	29			29	97	129
27	40	1197	27	91	519+	28	70	68			-1282*	29	100	797
27	41	1303	27	95	1277*	28	:71		29		- 1141	. 29	101	2977
27	42	804*	27			28	72	388	29	48	4421	29	102	3121
27	43	8434	27	.96	1885	28		8234	29	49	976*	29	103	64
27	44	227	27	97 98	481	28	73	. 46#	29	50	773*	29	104	3501*
27	45	1468	27	99	687*	28	74 75	791	29	51	59*		•	•
27	46	235	27	100	567	28	76	3545	Z9	52	1009*	30	30	10000
27	47	3577*			2500			224+	27	53	212	30	31 .	4029
-27			27	101	1250*	28	77	3046	29	54	1768	30	32	7470
	-48	495* -		10Z	919*	28	78	995	29	55	145#	30	33	5310
27	49	1010#	27	103	545	28	79	1817	.29	56	147	30	34	3400
27	50	1049 -	· 27	104	497*	28	80	886	29	57	2831	30	35	720*
27	51	1966				28	81 ·	1265	'29	58	4 2Ź	· 30	36	560
27	52	746*	28	28	10000	28	82 .	179*	29	59	37#	30	37	772*
27 ·	53	648	28	29	351	28	83	364#	29	60	1882	30	38	482*
27	54	2581	28	30	2761*	28	84	405	29	61	2980*	30	39	693
27	55	285*	28	- 31	515*	28	85	1063#	29	62	102*	30	40	1771
27	56	1089	28	32	3492*	28	86	. 136 ·	29	63	328	30	41	5145
27	57	3491🖛		33	1577*	28	87	1645#	29	64	2229	30	42	1654
27	58	1355	28	34	286	28	88	937+	29	65	3189	30	43	4617
27	59	1242*	28	35-	89≠	28	89	-196	29	66	2039*	30	44	1500
Z7	60	3129*	28	36	893	28	. 90	878*	29	67	897	30	45	1796
27	61	2704#	28	37	1313	28	91	1784	29	68	839	30	46	2615*
27	62	1852*	28	38	318#	28	92	1819*	29	69	3444*	30	47	1496+
27	63	380*	28	39	1787*	28	93	234*	29	70	81	30	48	3547
27	64	2042*	28	40	122	28	94	246*	29	71	2816	30	49	2453*
27	65	125	28	41	945*	28	95	910+	29	72	2333*	30	50	903*
27	66	2943	28	42	300 *	28	96	1750	29	73	1519	30	51	3449*
27	67	1981*	28	43	976*	28	97	3169+	29	74	2873	30	52	4614*
27	68	3568¢	28	44	727	28	- 98	3879+	29	75	971*	30	53	3887*
27	69	22 23*	28	45	1198	28	99	106+	29	76	2053*	30.	54	1555*
27	70	2652*	28	46	2555	28	100	1319+	29 -	77	818	30	55	1355+
27	71	57	28	47	1852	28	101	1158	29	78	4815	30	56.	
27	72	391	28	48	2168+	Z6	102	1043	29	79	237	30	57	61 • 69*
-27	-73	2125+	-28		733+	28	103	1461*	29	80	61	30	58	· 69+ 734
27	74	3260*	28	50	838*	28	104	352*	29	81	1313*	30		-
27	75	755	28	51	522*			-	29	82	635	30		_ 169* - 31*
27	76	3092*	28	52	784	29	29	10000	29 .	83	1450	30	61	· 946+
27		_266	_28_	53	495*	29	30		29	84	494*	30	62	517
27	78	1498+	28	54	1736*	29	31	263	29	85	1017	30	63	2847
27	79	802	28	55	2065*	29	32	497*	29	86	2803	30	64	731*
27	80	2547*	28	56	1287	29	33	2554×	29	87	797	30	65	291
27	81	1253	28	57	1632	-29	34	3175	29	88	2543	30	66	
27	82	448	28	58	383	29	35	.287*	29	89	219*	30	67	1163
27	83	2187*	28	59	- 24	29	36	1528	29	90	342*	30	68	1260*
27	84	467	28	60	68	29	37 -	1421	29	91 ["]	2045	30	69	672*
27	85	1023	28	61*	996*	29	38	319	29	71 92	1154*	30	70	845*
27	86	2389	28	62	· 204	29	39	1923 •	29	92 93	3929*	30 30		1313*
27	87	2575	28	63	295	29	40	3201	29	94 94			71	1719
27	88	1646*	28	64	295	29	41				1755	30	72	997*
27		-798+	28	65		29 .	42	2821	29	95 04	1406	30	73	55
	90		28		1122			1851	29		1908	30	74	5
27	70	1885	60	66	252	29	43	1524	29	97	1995	30	75	980*

		Corr.			Corr.			Corr.	<u></u>		Corr.			Corr
lar.	Var.	Coel,	Var,	Var.	Coel.	Var,	Var.	Coel.	Var.	Var,	Coel,	Var.	Var.	Coef
<u>(A)</u>	(B)	(7)	(A)	(B)	(7)	(A)	(B)	(r)	(A)	(B)	(r)	, (A)	(B)	(r)
30	76	481#	31	55	-1103	- 32	35	1101+	32	89	3392*	33	70	38
30	77	421	31	56	957*	32	36	1409	32	90	4233/	33	71	3633
30 1	.78	2228*	31	57	1933	32	37	3249*	3Z	91	4680+	33	72	1121
30	79	4173*	31	58	1453	32	38	443*	32	92	2141+	33	.73	2936
30	80	2575*	31	59	Z78*	3Z	. 39	412	3Z	93	938#	33	74	688
30	81	258*	31	60	2001	32	40	1063	32	94	1326*	33	75	1404
30	82	414*	31	61	60*	32	41	2810	32	95	265	33	76	1160
30	83	175#	31	62	1579	32	<u>42</u>	565*	3Z	96	54	33	77	2611
30	84	83*	31	63	1391	32	43	5098	3Z	97	383	33	78	2662
30	85 01	1097	31	64	2549	32	44	279*	32	98	1485	33	79	4483
30	86	798	31	65	1059	32	45	433	32	99	Z230*	33	80	648
30	87	2969	31	66	1255*	32	46	2083*	32	100	199*	33	81	2799
30	88	, 487#	31	67	738*	32	47	40*	32	101	449	33	82	330
30 30	89 90	1760*	31		- 421	32	48	2525	32	102	1667*	33	83	2999
		2088	31	69	168	32	49	1514*	32	103	705*	33	84	927
30 30	91	4 066≉	31	70	2222#	32	50	843*	32	104	653*	33	85	3071
30	92	1166*	31	71	2655	32	51	2226*	•.			33	86 ,	. 97
30	93 94	446 212	31	72	458Z*	32	52	2653*	33	33	1 0000	33	87	729
30	95		31	73	783	32	53	2825*	33	34	534*	33	88	1954
30	95 96	979	31	74	2045	32	54	1389*	33	35	2989	33	89	1196
30	90 97	1440 794	31	75	878	32	55	1879+	33	. 36	553*	33	90	1237
30	98	1016	31	76	1636≎	32 32	56 57	920¢	33.	37	877*	33 -	91	2597
30	70 99	1018 4185≎	31 31	77 78	1202≎ 2004	32	58	579*	33	38	2183*	33	92	1607
30	100	1163	31	79	-915*	32	59	1318 854	33 33	39 40	582	_33 `	93	104
30	101	1234	31	80	298	32	60	1595*	33	41	1362*	33	94	2047
30	102	1420*	31	81	1158	32	61	1514*	33	42	773 1094*	33 33	95	1200
30	103	737*	31	82	695*	32	62	113	33	43	3178		96	1408
30	104	1662#	31	83	492	32	63	3481	33	44	825*	33 33	97 98	1258
			31	84	175*	32	64	2858*	33	-45	896*	33	99	2029
31	31	10000	31	85	3844	32	65 [.]	1077	33	46	468*	33	100	1474
31	32	1764	31	86	4458	32	66	398	33	47	1550+	33	101	15
31	33	1500	31	87	416	32	67	1303*	33	48	1304	33	102	1782
31	34	1237	31	88	3755	32	68	2376+	33	49	307	33	103	1664
31	35	3657*	31 -	89	2882	32	69	2319*	33	50	722+	33	104	800
31	36	1044*	31	90	821	32	~ 70	47*	33	51	916+			
31	37	1451*	31	91	1303*	32	71	182	33 -	52	1606*	34	34	10000
31	38	2071*	31	92	_124±	32	72	539	33	53	322.9*	34	35	1462
31	39	1732	31	. 93	1373	32	73	26	33	54	1654*	34	36	. 5165
31	40	2024	31	94	310	32	74	332	33	55	542*	34	37	2406
31	41	97	31	95	250-		75	658*	33	56	1412	34	38	4167
31	42	3668	31	96	1225	32	76	1084	33	57	1067	34	39	3668
31	43	837	31	97	1174	32	77	779*	33	58	2507*	34	40	4578
31	44	1578*	31	98	1403	32	78	2666*	33	59	3702*	34	. 41	7583
31	45	3062	31	99	1307*	32	79	4469*	33	60	3221*	34	42	4194
31	46	1632*	31	100	4041	32	80	186*	33	61 .	2919*	34	43	3799
31	47	1618* ·	-	101	4138	32	81	414*	33	62	3161*	34	44	7120
31	48	1916	31	102	.1377	32	82	128	33	63	1834	34	45	5759
31	49 50	1387*	31	103	21*	32	83 84	23* 2240*	33 33	64 65	. 53* 2287*	34	46	2652
31 31	50 51	146* 1481*	31	104	976*	32 32	85	1468		65 • 66	-1118*	34 34	47 48	2043 6441
31 31	52	1368*	32	32	10000	32	85 86	95	33	67	2224	- 34	49	987
31 31	53	*288	32	33	4942	32	87	566	33	68	344*	- 34 - 34	47 50	881
			-	و و	7776									

WADC TR 59-505

The second second second second

Parts Prostant a car

11-15

														•
		Corr.	_		Cors.			Corr.			Corr,	_		Corr.
Var.	Var.	Coef.	Var,	Var,	Coel.	Var.	Var.	Coef.	Var,	Var.		Var,	Var.	Coef.
<u>(A)</u>	(B)	(1)	<u>(A)</u>	·(B)	(1)	(A)	(B)	(r)	14;	(B)	(5)	(A)		(1)
34	52	1505#	35	35	10000	35	89	2454*	36	73	2364	37	58	2190*
34	53	362+	35	36	1558	35	90	2534*	36	74	2059#	37	59	4071#
34	54	843*	35	37	1314	35	91	685	36	75	2410*	37	60	1041#
36	55	364*	35 ·	38	. 659	35	92	1128	36	76	1410#	37	61	267*
34	- 56	1005	35	. 39	143+	35	93	213	36	77	1515*	37	62	2880+
34	57	2398	35	40	4117*	35	94.	1703*	36	78	957*	37	63	1880+
34	58	2697	35	41	663+	35	95	1522*	36	79	1651+	-37	64	1848
34 34	59 60	3296	35 35	4Z	4457*	35	96	858*	36	80	3703	37	65	3256+
34	61	2699 2807	35	43	105*	35	97	753#	36	81	1262	37	66	2102
34	62	3135	35	44 45	267 446 3*	35 35	-98 99	968+	36	.82	922*	37	67	907*
34 34	63	1114	35	46	791	35	100	447	36	83	2271	37	68	1004
34	64	2077	35	47	2137	35	101	1173 796#	36 ' 36	84	609+	37	69	2795
34	65	3456	35	48	49*	35	102	38#	36	85 86	2571*	37	70	349*
34	66	2512	35	49	64+	35	103	1787	- 36	87	2073 1404*	37 37	.71 72	2242 716*
34	67	719+	35	50	3186+	35	104	1501	36	88	1139	37	73	2922*
34	68	286*	35	51	2139*				36	89	1369	37	74	2353*
34	69	692	35	52	2205*	36	36	10000	36	90	1471*	37	75	3503*
34	70	391	35	53	2156+	36	37	280	36	91	932	37	76	347*
34	71	2076*	35	- 54	1741*	36	38	4142	36	92	1894	37	77	371
34	72	861	35	55	1303*	36	39	817	36	93	2327+	37	78	1472*
34	73	4435	35	56	1067*	36	40	1849*	36	94	3781*	37	79	2882
34	74	1624	35	57	658*	36	41	2843	36	95	2874+	37	80	2129*
34	75	2613*	35	58	1848+	36	42	812*	36	96	4824*	37	81	986+
34	76	1172*	35	59	1567*	36	43	266	- 36	97	3849+	37	82	2126
34	77	3299	35	60	3768*	36	44	1637	36	98	48	37	83	3269*
34	78	2854*	35	61	856*	36	45	303*	36	99	3781*	37	84	1995
34	79	2847+	35 35	- 62 63	2667*	36	46	1721	36	100	1415	37	85	2172*
34	80	914 536	35	64	2587* 1033*	36	47	2806	36	101	827	37	86	1212
34 [°] 34	81 82	1120*	35	65	2352*	36 - 36	48	3644	36 36	102 103	1142	37	87	164
34	83	3878	35	66	375	- 36	49 50	543* 5028*	36	104	2343+	37	88	435*
34	84	399*	35	67	2970	36	50	3836*			1123+	37	89 90	622
34	85	594*	35	68	1313*	36	52	2316*	37	37	10000	37	91	3182* 1907
34	86	4656	35	69	209	36	53	2797*	37	38	3653	37	92	1424
34	87	967*	35	70	1592	36	54	2628*	37	39	1670	37	93	2789
34	88	3379	35	71	512*	36	55	10*	37	40	790	37	94	1263
34	89	321*	35	72	1293	36	56	809*	37	41	1368	37	95	189
34	90	130*	35	73	1095*	36	57.	1070+	37	. 42	371	37	96 ·	767
34	91	1008*	- 35	74	1518#	36	58	1534	37.	43	76	37	97	2068
34	92	1854	35	75	3197*	36	59	3163	37	44	4840	37	98	422
34 -	93	1251*	35	76	780	36	60	886*	37	45	571	37	99	756*
34	94	859*	35	77	70	36	61	2466	37	46	3838	37	100	1387
34	95	1391*	35	78 '	2639*	36	62	1476	37	47	29	37	101	2496+
34	96	882*	35	79	2875*	36 36	· 63	723+	37	48	1699	37	102	3279+
34.	97	305*	35 35	80 81	656* 2486*	36	64 65	1312 813	37 37	49 50	4152* 304*	37 37	103 104	1569*
34 34	98 99	907 2518*	35	82	136*	36	66	2768	37	50 51	473		144	292
34	100	2510-	35	83	851*	36	67	1902*	37	52	1203*	38	38	10000
34	101	3908	35	84	328	36	68	1866*	37	53	657	38	39	829
34	102	3262	35	85	1473	36	69	380	37	54	143*	38	40	1818
34	103	2606*	35	86	10	36	70	847	37	55	179+	38 -	41	- 1902
34	104	2830*	35	87	1764	36	71	4302*	37	56	1696	38	42	1959
۰.			35	88	1834	36	72	4810	37	57	1406+	38	43	1472*

														• ·
		Corr.			Corr.			Corr.	·		Corr.	<u> </u>		
	Yar.	Coel,		Var,	. Coel.	Var.	Var.	Coef.	Yar.	. Yar	Coef,	Var	Var	Corr
(A)	(B)	(7)	<u>(A)</u>	<u>(B)</u>	(7)	<u>(A)</u>	(B)	(1)	(A)	(B)	(1)	(A)	(8)	
38 -	- 44	2893	38	98	2226	39	85	49	- 40	the second s				
38	45	818+	38	. 99	94	39	86	5135	40	72	27464		61	1873
38	46	1494	38	100	90		87	3359		73	4119	41	62	1980
38	47	1800	38	101	793	39	88	3129	-40	74	3330	.41	63	1712
38	48	220Z	38	10z	\$19	- 39 -	89	1098	40	75	1212	41	64	26
38	49	.45	38	103	1234	39	90		- 44	76	1268	41	65	214
38	50	319	38	104	829	39	91	1018+	40	77	3556	41	. 66	371
38	51	393			~~ /	39	92	1933*	40	78	218	41	67-	9
38	52	2135	39	39 ·	10000	39	76 93	1956	40	79	2716*	41	68	34
38	53	2065	39	40	2153	39	73 94	203	40	80	526*	41	. 69	
38	54	427	39	41	226	39	95	693	40	81	999*	41	70	703
38	55	525*	39	- 42	937*	39		1598+	40	82	1027*	41	71	56
38	56	1735*	39	43		-	96	458	40	83	3956	41	72	733
38	57	601	39	44		39	97	494	-40	84	3774*	41	73	2622
38	58	1314	39	45	3728 237*	39	98	319*	40	85	1360	41	74	1498
38	59	2369	39	46	700+	39	97	163*	40	- 86	2950	41	75	1268
38	60	485	39	47		39	100	2030	40	87	128*	41	76	1342
38	61	2884	39	48	3456	39	101	1441	40	88	2809	41	77	3755
38	62	104*	39		1424	39	10Z	2754	40	. 89	2269#	41	78	3181
38	63	138+	39	49	725+	39	103	1339*	40	90	3212	41	79	1325
38 .	64	3156		50	1876	. 39	104	177	40	91	3720*	41	80	1027
38	·· 65		39	51	2081		-	•	40	92	375+	41	81	2
38	66	1194	39	52	3*		•		40	93	243*	41	82	863
38	67	2818	39	53	2190	40	40	10000	40	94	2002	41	83	2454
38	68	1278* 857*	39	54	2369	40	4I	2409	40	95	934	41	84	745
38 38	69		39	55	2824	40	42	7456	40	96 -	492	41	85	451
38	70	152Z	39	56	1029+	40	43	3313	40	97	529	41	86	2333
38		530	39	_57.	2113	40	44	3712	40	98	1591	41	87	1097
38	71	2614*	39 -	58	2695	40	45	4344	40	99	2086	41	88	1313
38	72	284	39	59	304*	40	46	971*	40	100	. 450	41	89.	
38	73	2473	39	60	2071	40	47	2*	40	101	4996	41	-90	76
38	74	507*	39	61	431	40	48	4139	40	102	3701	41	91	1104
38 38	75 76	1295*	39	6Z	3082	40	49	1707	40	103	1355	41	92	882
38 38	77	249*	39	63	539	40	50	1716	40	104	1384+	41	93	1454
38	78	2929*	39	64	2440	40	51	1740		•		41	94	7584
18 ·	79 ·	2341*	39	. 65	2511	40	52	2106	41	41	10000	41	95	1834
18 18	80	3090* 1286	- 39	66	2917	40	53	3322	41	42	2623	41	96	1484
18 .	81	56	39	67	1792*	40	54	3380	41	43	5345	41	97	33
18	82	,	39	68	802*	40	55	791	41	44	5715	41	98	11684
18 18	82 83	1498*	39	69	663	40	56	792*	41	45	5174	41	99	24424
18 18	84	2302	39	70	785*	40	57	3026	41	46	1060 -	41	100	537
18 18	85	2207*	39	71	84	40	58	3290	41	47	593+	41	101	1335
8	85 86	2772*	39	72	1638*	40	59	2697	41	48	5560	41	102	1745
18	87 .	950 1298*	39	73	2737	40	60	2797	41	49	722*	41	103	19434
8	88		39	74	2066	40	61	645+	41	50	1039*	41	104	3860
8	89 89	391	39	75	2708+	40	62	3130	41	51	2293*			
		2690*	39	76	315	40	63	1131	41	52	2787*	42	42	10000
8	90	2808*	39	77	805	40	64	2396	41	53	1769+	42	43	1751
8	91	345	39	78	1051*	40	65	4795	41	54	1091*	42	44	1995
8	92	4529 -	39	79	2595+	40	66	731*	41	- 55	1125+	42	45	4932
8	93	1244	39	80	8+		67	674	41	56	2508	42	46	6954
8	94	822	39	81	919		68	955*	41	57	1813	42	47	23954
8	95	711	39	82	1584+		69	2828+	41	58	1752	42	48	4295
8	96	3072*	39	83	2254	-	70	640+	41	59	2874	42	49	1225
8	97	12	39	84	1030	40	71	249=	41	60	2437	42	50	72*

									· ·			•			
•			Corr."			Corr.			Corr.			Corr.			Corr.
		Var.	Ċoel,	Var,	Var.	Coel,	Var.	Var,	Coef.	Var.	Var	Coel.	4.0	Var.	
	<u>(A)</u>	(B)	· (r)	(A)	(B)	(r)	(A)	(B)	(7)	(A)	(B)	(r)	(A)	(B)	÷ -
	42	51	302*	43	43	10000	43	97		-					(7)
	42	52	977	43 :	44	2881	43		1182*	44	89	1781+	45	82	707
	42	-53	1335	43	45	2037	43	98	889#	- 44	90	10027	45	83	1776
	42	54	1245	43	46	1032	43	99	321*	- 44	91	343+	45	84	,880
	42	55	1714	43	47	2291	43	100	79Z*	44	92	2474	45	85	1229 🗧
	42	56	174	43	48			101	1872	44	93		45	86	3604
	42	57	2968	43	49	3318	43 43	102	280	44	94	1148	45	87	2742+
	42	58	347	43	50	332 860#	43	103 104	1750*	44	95		- 45	88	1921
	42	59	2167	43	51	1771*		104	4047*	44	96	909	45	89	25*
	42	60	2228	43	52	1911*	44			- 44	97	2027	45	90	1966
	42	61	278*	43	53	1559*	••	44	10000	-44	98	928	45	91	421
	42	62	1771	43	54	752*	44	45	3426	- 44	99	1425#	45	9Z	1487*
	42	63	1025	43	55	695*	44	46	3562	44	100	977¢	45	.93	582*
	42	64	4150	43	56	2237	44 -	47	Z464	44	101	1627	45	94	338+
	42	65	2486	43	· 57	2400	44	48	5750	- 44	102	1779	45	95 ·	632*
	42	66	1767#	43	58	560	44	49	166 3#	44	103	3364*	45	96	2735
	42	67	481	43	59	880	44	50	564	44	104	17 22≠	45	97	1914
	42	68	- 1219	43	60	- 884*	44	-51	- 21			•	45	9 8	869
	42	69	1950¢	43	61	1191*	44	52	1901*	45	45	10000	45	99	2320
	42	70	251	43	62	783	44	53	6	45	46	2061	45	100	1870*
	42	71	757	43	63	1560	44	54	1258+	45	47	2342*	45	101	1542*
	42	72	2526≎.	43		- 547*	44	55	2755*	45	48	4414	45	10Z	2320
	42	73	2429	43 .	65	1100	44 44	56	2308	45	49	1273*	45	103	1870+
	42	74	2735	43	66	2591*	44	57	2523	45	50	557	45	.104	1542*
	42	75	1140		67	2708	44	58	1815	45	51	806		-	-
	42	76	235	43	68	1177¢	44	. 59 60	1247	45	52	269*	46	46	10000
	42	77	2437	43	69	1954=	44	61	3757	45	53	1018	46	47	1999
	42	78	373	43	70	163	44	62	2068	45	54	536	46	48	901
ŧ	42	79	1375≠	43	71	1268	44	63	2799	45	55	957*	46	49	2144*
Ĭ.	42	80	706+	43	72	317	44	64	486÷	45	56	3598	46	50	2152
	42	81	1441*	43	73	1118	44	65	321	45	57	2356	46	51	1468
•	42	82	434#	43	74	2608	44	66	1922 2452	45	58	894	46	52	1959
	42	83	2423	43	75	2340≉	44	67	414*	45	59	1606	46	53	554
	42	84	2502*	43	76	3269	44	68	1136	45 45	60 61	3901	46	54	1624#
	42	85	303	43	77	4725	44	· 69	2532	45	62 62	1640	46	55	2119*
	42	86	1158	43	78	2467*	44	70	375	45	63	1529 1462 -	46 46	56	727 -
	42	87	1134*	43	79	1913#	44	71	738*	45	64	299*	46	57	418*
	42	88	3048	43	80	1079	44	72	1385	45	65	2457	40 46	58 59	1088+
	42	89	883	43	81	2989*	44	73	3472	45	66	97*	46	59 60	1530*
	42	90	1056	43	82	230	44	74	1647	45	67	394	46	61	1417*
	42	91	1059*	43	83	1290	44	75	4058*	45	68	2265	46	62	1544 1971*
	42	92	1248	43 **	84	2827*	44	76	68*	45	69 .	658	46	63	1395*
	42	93	786	43-	85	2047	44		-4645	45	70	389 -	46	64	235*
	42	94	629	43	86	38*	44	78	2453*	45	71	219	46	. 65	1578*
		95	19	43	87	319*	44	79	1634*	45	72	658*	46		- 1379
	42	96	156	43	88	3074	44	80	1964*	45	73	2266	46	67	204*
	42	97	1140	43	89	2193*	44	81	20	45	74	2416	46	68	36
	42	98	2670	43	90	2527	44	82	103	45	75	291	46	69	2938
	42	99	574	43	91	2768+	44	83	3021	45	76	2994*	46	70	695
		100	240+	43	92	1658*	44	84	253	45	77	3661	46	71	21
		101	4744	43	93	2754+	44	85	1839+	45	78	386+	46	72	2819
		102	2820	43	94	2129*	44	86	2863	45	79	720	46	73	1710+
		103	2214	43	95	758*	44	87	824*	45	80	959+	46	74	1382+
	42 1	104	1330+	43	96	790	44	88	100	45	81	382	46	75	1866+
				•								-		-	

		Corr.			Corr,			Corr.				·		
Var,	Var.	Coef.	Var,	Var,		Var	. Var.	Coel.		. Var	Corr.			Corr.
(A)	(B)	(r)	(A)	(B)	(r)	(A)		(7)	(A)				Var.	
46	76	1120%	47	71	2019*		67		_	and the second se	the second s	<u>(A)</u>	<u>(B)</u>	<u>(r)</u>
46	77	969	47	72	1471	48	68	1776	49	64	820	50	62	75
46	78	959#	47	73	3320	48	69	396	49	65	4125	50	63	2362
46	79	1571	47	74	1992	48	70	1999	49	66	2718*	50	64	1797
46	80	59	47	75	1512*		71		49	67	3983	50	65.	232
46	81	Z087#	47	76	3697		. 72	327	49	68	3061*	50	.66	649
46	82	2262	47	- 77	1037	48	. 73	462	49	69	32 38*	50	67	147#
46	83 .	1962#	47	78	996*	48	74	3287	- 49	70	1813*	50	68	1301
46	84	1741	47	79	1810*	48	75	2057	49	71	1421*	50	69	2004
46	85	1356	47 -	80	2139			2847*		72	440*	50	70	968#
46	86	1537	47	81		48	76	91Z#	-	73	3084	50	71	1360
46	87	3094*	47	82	* 984 369	48	. 77	2514	49	74	3582	50	72	2256*
46	88	1992	47	83		48	78	5227	49	75	580	50	73	184
46	89	1180	47		3261	48	79	Z680#	49	76-	1162	50	74	441
46	90	1020#	47	84	640*	48	80	379*	49	77	2733	50	_ 75	867
46	91	.929	47	85 86	749*	48	81	1965+	49	78	731*	- 50	76 ·	150
46	92	-			986	48	82	459	49	79	2343*	50	77	153
46	93	715	47	87.	748	48	83	2945	49	80	3933	50	78	1152
46	94	1410	47	88	1271	- 48	84	7 06≄	49	81	1214*	50	79	1120
46	95	563¢	47	89	719≉	48	85	. 435	49	82	2211*	50	80	1046*
46	95 96	10179	47	90	1238	48	86	4655	49	83	3322	50	81	646*
	-	1872*	47	91	291	48	87	2519*	49	84	1254*	- 50	. 82	189*
46 46	97	283÷	47	92	12%0*	48	88	2721	49	- 85	1750	50	83	373*
46	98 98		- 47 -	93	173*	48	89	1212*	49	86	5	50	84	173
46	99	1997*	. 47	94.1	8 58≠	48	90	1020	49	87	97*	50	85	1699
46	100	2854*	47	95	1831*	48	91	605*	49	88	2483	50 /	86	845 .
46 46	101	2241*	47	96	2260≎	48	92	832	49	89	1007≈	- 50	87	478
46	102	1997*	47	97	2921≈	48	- 93	724*	49	- 90	1441	50	88	. 181*
46	103	2854*	47	03	973*	48	94	744+	49	91	3066*	50	89	275
46	104	2241*	47	99	2057	48	95	1174+	49	9Z	347*	50	90	545
			47	100	2811=	48	96	561*	49	93	3309*	50	91	1125#
47	47	10000	47	101	326	48	97	838	49	94	1962*	50	92	339*
47	48	1137	47	102	2057	48	98	2039	49	_95	1754*	50	93	263 *
47	49	102	47	103	2811*	48	99 ^{~~}	2311	49	96	2119*	50	94	3358
47	50	482	- 47	104	326	48	100	614*	49	97	2988*	50	95	1193
47	51	92*				48	101	22 92*	49	98	1236*	50	96	1608
47	52	131	48		10000	48	19Z	2311	49	99	3335	50	97	1376
47	53	42.3	48	49	477*		103	614*	49	100	703	50	98	35
47	54	630×	48	50	1810*	48	104	2292*	49	101	3211	50	99	4443
47	55	655	48	51	571*				49	102	5233	- 50	100	1996*
47	56	438	48	52	1687*	49		10000	49	103	3664	50	101	6+
47	57	2840	48	53	212*	49	50	965	49	101	1137*	50 °	102	171*
47	58	187	48	54	269	49	51 .	3621				50	103	1492
47	59	917	48	55	1845*	49	52	5814	50	50	10000	50	104	1213*
47	60	870	48	56	1379	49	53	4973	50	51	7212			·
47	61	1472	48	57	2880	49	54	4665	50	52	5654	51	51	10000
47	6Ż	1523	48	58	640	49	55	1803	50	.53	5108	51	52	7626
47	63	777*	48	59	1624	49	- 56	42		- 54	3487	-51	53	8342
47	64	543	48	60	3289	49	57	3517	50	55	1237*	51	54	7250
47	65	1058	48	61	1422	49	58	3480	50	56	299*	51	55	669*
47	66	880	48	62	1120	49	59	3733	50	57 *	590	51	56	983
17	67	472	48	63	369	49	60 .	56	50	58	653.	51	57	1489
47	68	404	48	64	1740	49	61	289+	50	59	481+	51	58	25
47	69	1043	48	65	1537	49	62	2059	50	60	2485	51	59	1298+
17	70	4326	48	66	301+	49	63	1814	50	61	1428	51	60	1645

.123

												•			
		Corr,			Corr,			Corr.			Corr.			Corr.	
Var,		Coel,	Var,	Var.	Coef.	Vai	r, Var	· Coef.		. Var		Var	Var.		
<u>(A)</u>	(B)	(r)	(A)	(B)	(r)	(A)' (B)		(A)	(B)		(A)			
51	61	565+	52	61	199*	53						_	(B)		
51	6Z	1502*	52	62	1202*	53			54	64	2107	55	67	676#	
51 -	63	256	52	63	1610	53			54	65	3097	55	68	1989#	
51	64	1886	52	64	2839	53		2643	54	. 66	29	55	69	, 1906+	
51	65	963	52	65	2001	53		2743	54	.67	1099*	55	70	1087*	•.
51	66	- 544	52	66	1620*	53		204	- '54'	68	724*	55	571	856	
51	67	266+	52	. 67	1598	53		83	54	69	3131*	55 .		1861#	
51	68	1128	52	68	467*	· 53		440*		70	.57×_	55	73	21	
51	69	- 301	. 52	69	1177*	53		1162*		71	1141	55	74	1395	
51	70	506	52	70	340*	53	70	302*	54	7Z	2197#	55	75	2045	
51	71	1529	52	71	566	53	71	67*		73	880	55	76	2269	
51	72	1360*	52	72			72	1516*	54	74	Z268	55	77	718*	
51	73	395*	52	73	1947*	53	73	1561	54	. 75	466	55	78	13*	
51	74	1509	52	74	1	53		2287	54	76	3249*	-55	79	1796	
51	75	300	52	75	2168	53	75	164	. 54	77	860	55	80		
51	76	930*	52	76	2160	53	76	1346*	54	78	52Z	55	81	1128	_
51	77	1416	52	77	554¢	53	77	554	54	79	311*	55	8 Z	1329*	-
51	78	975	52	78	494 865	53	. 78	436*	54	80	1284	55	83	797	
51	179	1531	52	79	129	53	79	501	54	81	1299*	55	-34	1886	
51	80	735	52	80		53	80	1565	54	82	-86	55	85	370	
51	81	1849*	52	81	3695 2825≉	53	81	1959*	54	83	845	55	86	1853	
51	82	891	52	82		53	82	879	54	84	768≉	55	87	2045	
51	83	882*	-52	83	890	53	83	1189	54	85	2312	5 5	88	3068	
51	~ 84	429*	52	84	310*	53	84	761*	54	86	3260	55	89	3908	
51	85	1407_	_52	9 <u>5</u>	584≠ 17 56	53 '53-	- 85 86	570	54	87	969	55	90	2551	
51	86	1625	52.	86	261	53		- 2265	54	88	2209	55	91	1435#	
51	87	614*	52	87	2723	53	88	369*	54	89	50 7≉	55	92	2491*	
51	88	752	52 .	88	1933	53		1404	54	90	206	55	93	304*	
51	89	6	52	89	482 ≠	53	. 90	-: 890*	-54	91	3710*	55	94	2236*	
51	90	933*	52 ·	-90	515*	53	91	842*	54	92	532	55	95	2601*	
51	91	851*	52	. 91	. 1370*	53	92	2318¢	54	93	1493#	55	96	867*	
51	92	719	52	92	789	53	93	770*	54	94	1327*	55	97	1850 *	
51	93	2407*	52	93	1700*	53	94	420*	54	95	2728*	55	98	1740=	
51	94	322	52	94	13*	53	95	2077*	54	.96	364≠	55	99	500# ⁻	
51	95	1448*	52	95	398*	53	96	918*	54	97	768*	55	100	3098	
51	96	948	52	96	2252=	53	97	187¢	54	98	28	55	101	274	
51	97	520	52	97 -	1953*	53	98	.983	54	99	6592	55	102	2465	
51	98	222÷	52	98	117	53	99	7149	54	100	4141	55	103	1591	
51	99	6966	52	99	6697	53	100	869	54	101	736	55	104	457*	
51	100	146+	52	100	797*	53	101	341	54	102	2891				
51	101	1177+	52	101	882	53	102	2493	54	103	1193	56	56	10000	
51	102	966	52	102	1644	53	103	2027	54	104	631	56	57	766	
51	103	937	52	103	3270	53	104	1207	55	E	20000	56	58	1593*	
51	104	573*	52	104	146			1001	55	55 56	10000	56	59	1304*	•
		•••		-	•••	54	54	10000	55	57	1051	56	60	2196	
52	52	10000	53	53	10000	54	55	1622	55	58	507	56	61 .	648	
52	53	8327	53	54	8442	54	56	112	55'	59	215	56	62	181	
52	54	6214	53	55	48	54	57	2093	55	57 60	568¤	56	63	888*	
52	55	287*	53	56	758+	54	58	1517	55		2348*	56	64	1672*	
52	56	1906+	53	57	2384	54	59	918	55	61	2005*	56	65	1681*	
52	57	2296	53	58	2096	54	60	923	55	62 63	558 7770	56	66	1069	
52	58	806	53	59	1975	54	61	2136*	55	64	777*	56	. 67	642*	
52	59	1232	53	60	1926	54 .	62	197* -	55	65	177	56	68	3018	
52	60	402	53	61	304	54	63	1031+	55	65 66	578	56	69	1825	
									22	99	1772*	56	70	1272	

												-			
· .			Corr.			Corr.			Corr.			Corr.			Corr.
· · · · ·		Yar.	Cogl.	Var.	Var.	Coel,	Var,	Var,	Coel.	Var,	Var.	Coel.	-	Var.	Coel.
	(A)	<u>(B)</u>	<u>(r)</u>	. <u>(A)</u>	(B)	(r)	<u>(A)</u>	(B)	<u>(r)</u>	<u>(A)</u>	(B)	(7)	<u>(A)</u>	<u>(B)</u>	(1)
	56	71	532	57	76	293	58	82	4717*	59	89	2629#	60	97	257
	56	72	2134	57	77	3850	58	83	6485	59	90-·	818	60	98	486
•	56	73	240	57	78	649	58	84	1091*	59	91	2100#	60	99	1394
	56	74 -	333	57	79	3802*	58	85 -	639*	59	92	:554	60	100	
	56	'75	1919*	57	80	102	58	86	4047	59	93	1218*	60	101	2579
	56	76	967*	57	81	2956*	58	87	191Z	59	94	2357*	60	102	3300 -
	56	.77	4329	57	82	268	58	88	530	59	95	2432*	60	103	2217*
	56	78	1523*	57	83	4196	58	89	2581*	-59	96	2546*	60	104	1322
	56	79	2647	57	84	1096*	58	90	1054	59	97	3029#			
;	56	80	1143	57	85	1494	58	91	3526*	59	98	106	61	61	10000
	- 56	81	1990	57	86	1933	58	9Z	349	59	99	Z64	61	62	5579 🖯
	56	82	2500*	- 57	87	645	58	.93	1844*	59	100	26*	61	63	581*
	56	83	273	57.	88	3633	58	94	578	· 59	101	2774	61	64	510*
	56	84	3266	57	89	3045¢	58	95	319#	59	10Z	5549	61	65	18
	: 56	85	2067#	57	90	45.*	58	96	422*	59	103	541	61	66	3438
	56"	86	12	57	91	410	58	97	1350#	59	104	629*	61	67	1077*
	56	87	2954÷	- 57	92°	411	58	98	7425				61	68	2241
	56	88	9554	57	93	1567#	58	99	107	60	60	10000	61	69	7539
	56	89	1303	57	94	1387#	58	100	1677	60	61	6058	61	70	371*
	56	90	455	57	95 .	1821*	58	101	3701	60	62	5489	- 61	71	6431*
	56	91	-1049	57	96	3611	58	102	5446	60·	63	17*	61	72	4348
	56	92	2321#	57	97	.946#	- 58	103	Z2*.	60	64	1976	61	73	5851
• •	56	93	984#	57	98	3060#	58	104	. 2246#	60 · 60	65 66	2367	61	74	1700*
	56	94	2032#	-57	99	296	50		10000	- 60	67	2535~ 1816*	61	75 76	2658* 474
	56	95		-57-	-100	1115	59	- 59	10000	60	68	5525	61 61		- 1261*
;	56	96	1792	57	101	3895	59	60	3195 5135	60	69	4507	61	77 78	692*
	56	97	86	57	102	6715	59 59	61 . 62	7671	60	70	1123	61	79	113*
	56	98	1016*	57	103	186*	59	63	3029	60	71	2736*	-	80	857
	.56	99	1121	57	104	2716*	59	64	271	60	72	345*		81	1882
	56	100	905*			10000	59	65	6032	60	73	6303	61	82	2279*
•	56	101	1057≭ 189≠		58 59	6993	59	66	693	60	74	1710	- 61	83	5516
;	56	102	2441#		57 60	2376	59	67	676#	60	75	1043*		84	765*
	56 56	103 104	F101*		61	3042	59	68	3571×	60	76	105*		- 85	3020*
	20	104	FIOIT	58	62	7997	59	69	1756*	60	77	1306	61	86	423
-	57	57	10000	58	63	4444	59	70	2195*	60	78	2843	61	87	2344*
-	- 57	58	1495	58	64	134*	59	71	5427*	60	79	434*		88	1998*
	57	59	2344	58	. 65	7122	59	72	2642	60	80	937*		89	742*
	57	60	2029	58	66	1880	59	73	7756	60	81	1629		90	1722*
	57	61	941*		67	650*	59	74	2223	60	82	3379*		91	952
•	57	62	1887	58	68	6756*	59	75	535	60	83	5714	61	92	3097
	- 57	63	2583	58	69	1996*	59	76	1018*	(60	* 84	1072*		93	1898
	57	64	3050	58	70	6398*	59	77	6 58*		85	1443	61	⁻ 94	639+
	57	65	6045	58	71	3972*	59	78	1438*	60	86	1592	61	· 95	556*
	57	66	48514		72	501	59	79	2336*	. 60	87	2266*	- 61	96	3588*
	57	67	3446	58	73	6673	59	80	2428	60	88	14524	61	97	2060*
	57	68	84		74	2041	59	81	2721	60	. 89	1302		98	725
	57	69	2848		75	127	59	82	3504-0	60	90	11674		99	915*
	57	70	* 740		76	395*	59	83	7834	60	. 91	439	61	100	1304*
	57	71	4065	58	77	1100*	59	- 84	2171*	60	'92	2082.		101	27
	57	72	2021		78	1212*	59	85	2500*	60	93	949	. 61	102	1461
	57	73	4019	58	79	2235+	59	86		60	÷ 94	2110	61	103	2282*
	57	. 74	9557	58	- 80	799	59				95	932	61	104	2014
	57		1031	58	81	3287	59	88	352*	- 60	96	22			
				•											
						•									

íar.	11.	Corr.			Curr.			Corr.			Corr.			Corr.
A)	Var, (B)	Coel.	Var,			Var.	-	Corf.	Var.	-	Corl.	Var.	Var	. Coel.
		<u>(r)</u>	<u>(A)</u>	(15)	(r)	<u>((A)</u>	<u>(B)</u>	(7)	(A)	(f;)	(r)	(A)	<u>(B)</u>	(r)
62 4 7	62	10000	63	73	1402	64	85	611	65	28	ZZ41 ·	67	73	550
6Z	63	3023	63	74	2937	64	86	1660	65	94	235	67	74	3070
6Z 6Z	64	* 719	63	75	, 916	64	87	493	* 65	100	1232	67.	75	336#
62 62	65	5866	63	76	1372	64	88	3916	65	101	5499	67	76	2548
6Z	66 67	2595 1630≉	63	77	706*	64	87	1779	65	102	8262	67	77	4143
62	68	2670≉	63 63	78	1900	64	9 0	4 670	65	103	1640*	67	78	1202*
62	69.	462	63	79 80	1048-	64	91	1740	65	104 -	2578	67	79	1637#
62	70	3472¢	63	81	[™] 2604 5834	64	92	4010				67	80	283
62	71	5288×	63	82	1616*	.64 64	93	432	66	66	10000	67	81	4 992*
62	72	2069	63	83	769	64		• 1220	66	67	6799	67	8Z	2199
62	73.	8375	63	· 84	. 1782	64	95 96	851-	-66	68	367	67	83	354*
62	74	2040	63	85	12650	64	97	832	66	69	3402	67	84	832≉
52	75	811#	63	86	-1	64	97 98	1653	66	70	1147	67	85	3083
52	76	788	• 63	87	1521	64	37	1863-	66	71	54770	67	86	1432*
52	77	296	63	55	593	64	100	1749	66	72	2226	67	87	4 25¢
5Z	78	532~	63	89	1921#	64	101	1132	66	73	2186	67	88	4211
5z	79	1760*	63	90	957	64	102	2787 2150	66 66	74 7=	5384≎	67	89	1474#
5Z	80 -	73	63		954	64	103	2322 -		75 76	3460≎	67	. 90	1363
52	81	3486	63	92	2447	64	10-5	2322 · 956*	66	76 77	1601*	67	91	2135
52	82	5344≎	63.	93	1178	-	104	730*	66	78	2307	67	92	1719**
52	83	8210	63	94	1191	65 [°]	65 -	10000	60	79	2105	67 67	93	101
52	84	1186=	63	95	863	65	66	508	66	89	1159≉ 791×	67	94 95	1928
52	85	2976*	63	96	2668	65	67	35	- 66	81	4310	67	95 96	2974
2	86	2122	63	97	23-	65	6.8	4548	66 .	8 2	4611	67	90 97	2646
Z	87	1650	63	98	1291	65	63	47074	66	83	1377	67	98	457 1824*
2	88	656÷	63	99	1176	65	70	20.96	- 66-	-84	509	67	70 99	1024÷ 212≉
2	69	12920	63	100	2526	65	71	1053	66	85	2795°	67	100	1062*
2	90	217	63	101	1565	65	72	400*	66	86	1461	67	101	2622
2	91	20490	63	102	1583	65	73	6820	66	87	1406	67	102	1968
2	92	1341	63	103	2779	65	74	6805	66	88	30150	67		4112
2	93	359≎	63	104	2492+	65.	75	1281		89	256	67	104	. 927*
2	-94	86*				65	76	480 a	66	70	2486-			
2	-95	1245*	64	64	10000	65	77	1190	66	91 -	2136*	68	68	10000
2 .	96	851×	64_	65	983	65	78	879	66	92	2441	68	69	5419
2	.97	2296*	64	66	172-	65	73	4225°	66	93_	973	68	70	6173
2	98	927*	6-1	67	647	65	80	569	ü6	94	118	68	71	1124
2	99	890*	64	68	1495	65	81	715	66	95	1780*	68	72	463*
	100	317*	64	69	798	65	82	3184*	66	96	3354*	68	73	1039*
	101	3335	64	70	12	65	83	6796	66	97	441*	68	74	739*
	102	5524	64	71	1727	65	84	27950	66	าธ	1002	68	75	9130
	103	1825×	64	72	2868	65	S 5	1307	66	99	377	68	76	101
2	104	670**	64	73	1153	65	56	3022	66	100	733*	68	77	1800
3	63		64 64	74	1500	65	87 ·	2105	66	101	466*	68	78	3145
3	64	10000 1986	64	75 76	373= 163=	65	88	1918	66	102	1503*	68	20	1753
	65	-	64			65	80	4536	66	103	3577*	68	80	13350
3	66	3565		77	698	65	90	1044	66	104	2714	68	81	1481*
3 3	67	1428¤ 1788	64 64	78 79	-1192	65	01	23494		•_		68 .	62	1557
3	68	1100 3990a	64	80 -	1233*	65	92	1580	67		10000	68	83.	1316*
3	69	3990* 3024*	64	81	114 23879	65 4=	43 94	3424	67	68	804~	68	84	206
3	97 70	3024× 4448×	64	82	23879	65 4 =	-	656*	67	69 .	761*	68	85	541*
			64	83	586	65 62	45	1160	67	70	1008	68	86	2249a
3 3	71 72	1770 2422*	64	84	200 1705≎	65 65	96. 97	1325 17050	67 67	71 72	1427 1063*	68	87	3435=
												63	88 .	

		_									•.			
		Corr.			Curr,			Curr.		*******	Corr.			Curr.
	Var.	Coef.	Var'.	Var.	Corl.	.Var.	Var.	Corl.	Var,	Var,	Coef.	Var.	Var.	Coef.
(A)	<u>(B)</u>	<u>(r)</u>	(A)	(B)	(7)	<u>(A)</u>	(13)	(r)	(A)	(B)	(r)	(A)	(B)	(7)
68	89	151Z	70	70	10000	71	89	1085	73	76	1191	74	98	3020
68	90	1872#	70	71	824*	71	90	4299	75	77	714	74	39	,270
68	91	3466	70	72	1529	71	91	1325	73	78	308	74	100	796
68	92	1429	70	73	1710	.71	92	1706->	73	79	41 5 34	74	101	3597
68	93	2349	70	74	139	71	93	769#	75	80	1049	74	102	6837
68	94	1106	7C	75	· 621	71	.94	573	73	81	2061	74	103	490
68	95 -	1056	70	76	1167	71	95	530	73	82	5504 ^a	74	104	2862
68	96	281	70	77	1786	71	96	5410	73	83	9863			
68-	97	1353	70	78	121	71	97	2738	73	84	34982	75	75	10000
68	98	1075	70	79	1405*	71	98	1581#	73	85	10330	75	76	. 150
68	99	-891	70	80	38×	71	99	102#	73	86	3105	75	77	272
68	100	2257#	70	81	1761*	71	100	1769	.73	87	621	75	- 78	1592
68	101	1352*	70	82	1374	71	101	1445*	73	88	1017	75	79	2206
68	102	2382#	70	83	257%	71	102	1442*	7.3-	89	3720*	75	80	153
68	103	. 1749*	70	84	1903	71	103	1549	73	90	560	75	. 81	1954
68	104	2913	70	85	364	71	104	3427#	73	91	1810*	75	82	782
	•		70	86	1780#	-			73	92	1444	75	83	982
69	69	10000	70	87	1937*	72	72	10000	73	93	1541#	- 75	84	1261
69	70	1372	70	88	348	72	73	1750	73	34	1081¢	75	85	484
69	71	3180¢° 2946	70 70	89 90	1213» 598	72 72	74 75	23594 . 24396	73 73	95 96	2108	75 75	86 87	70Z 962
69	72	727	70		1572		76		73	90 97	1687¢	75	88	
69	73	3662×	70	91 92	170-	72 72	77	384	73	-98	2710* 671*	75	89	1197 632
69	74 75	3428¢	70	92	1097	72	- 78	- 1235¢	73	99	871∞ 307	75	90	2704
69 69	76	1261	70	94	1689#	72	79	≠1235* 20≎	73	100	328	75 .	91	443
69	77	939¢	70	95	1946	72	80	1349#	- 73	101	5057	75	92	2351
69	78	218	70	96	1317¢	72	81	1270		102	7589	75	93	91
69	79	1618	70	97	861	72	82	1982	73	103	1536¢	75	94	2035
69	80	850¢	70	98	272	72	83	2098	73	104	385*	75	95	2309
69	. 81	67	70	99	1275	72	84	1748			101+	75	96	2595
69	82	98	70	100	1542×		85	3558*	74	74	10000	75	97	1646
69	83	291	70	101	394*	72	86	2842*	74	75	1820	75	98	3085
69	84	852	70	102	759*		87	698	74	76	969	75	99	298
69	85	1619#	70	103	2851*	72	88	3143*	74	77	3365	75	100	469
69	86	913#	70	104	3392	72	89	885*	74	78	1228	75	101	1665
69	87	2337**				72	90	5264	74 -	79	3258*	75	102	61
69	88	2053×	71	71	10000	72	91	756	74	80	122	75	103	2103
69	89	1164	71	72	5304*	72	92	1635	74	81	2694*	75	104	168Ż
69	90	2591*	71	73	5409÷	72	93	741*	74	82	439			
69	91	2662	71	74	4299	72	94	3363°	74	83	4089	76	76	10000
69	92	2316	71	75	2147	72	95	2201°	74	84	1487*	76	77	: 992
69	93	3424	71	76	791*	-		2842**	74	85	2065	76 -	78	401
69	94	1041	71	77	1177	72	97	3285*	74	86	- 1496	76	79	472
69	95	1218	71	78	2424	72	98	1143*	74	87	878	76	80	463
69	96	2208*		79	1700	. 72	99	2469*	74	88	3163	76	81	2925
69	97	57°		80	1886*		100	1359*	74	89	3499*	76	82	380
69	98	827	71	81	3076*		101	3058*	74	90	887	76	83	1403
69	99	1222*		82	4010	72	102	702*	74	91	104*	76 74	84 85	3724 249
69	100	14000		83	52374		103	4595*		- 92	537*	76 76	86	3255
69	101	2164*		84	2587	72	104	. 565	74	93	2328*	76	87	1303
69				85	2651	73	73	10000	· 74 74	94 95	1410* 1297#	76	88	459
69	103	3021*		86	323- 1000	73	74	3785	-74	95 96	3962	76	- 89	1812
69	104	2832	71 71	87 88	1549	73	75	13940	-74	90 97	3902 494*	76	90	2193

ż

								,		•				
		Corr.			Corr.		· · ·	Cutt.			Corr.			Corr.
Far,	Var.	Cael.	Var.	Var.	Coel.	Var.	Vari	Coel.	Var,	Var.	Coel,	Var.	Var.	Coel.
<u>(A)</u>	<u>(B)</u>	· (r)	(A)	(B)	(r)	<u>(A)</u>	(B)	(r)	(A)	(B)	(r)	(A)	(B)	(7)
76	91	12520	78	88	286"	80	89	2452	82	94	830%	84	103	423
76	92	2072#	78	89	1647	80	90	162*	82	95'-	- 418	84	104	772
76	93	104#	78	90	810%	80	91	183	82	96	1308		10.4	
76	94	1254	78		2769	80	9Z	396%	82	97	1986	85	85	10000
76	25	330	78	92	1078"	80	93		82	· 98	1267	85	86	3740
76	96	757*	78	93	36 38-	80	94	382 3*	82 82	99		- 85	87	1574
76	97	1881*	78	94	1017	80	95	20370	82 82	100	1458#	85	88	5718
76	98	1547#	78	9 5	1404	80	96	2037# 5637#			320*		.89	932*
76	99	614#	78	96	460%	80	97		82	101	3571*	85 · 85	,97 90	3488
76	100	35930	78	97	350*	80		38170	82	102	3581+		90	3479
76	101	134	78	98		80	98 00	1218	8 <u>7</u>	103	272*	85		3018
76	102	• 79	78		. 5		99	1778	82	104	979	85	92	
76	102	1027	78	99	309	80	100	295*	• •			85	93	1137
76	104	443		100	264	· 80	101	1187	83	83	10000	85	94	776
10	104	44.7	78	101	1175	80	102	1297	83	84	3733*	85	95	762
			78	10Z	1253	80	103	764	83	85	970+	85	96	253
77	77	10000	- 78	103	8904	80	104	1491+	83	86	2729	85	97	569
77	. 78	2447*	78	104	1979#				83	87	750	85 -	98	85
77	79	1032*				81	81	10000 -	83	88	1068	85	99	2517
77	80	107	79	79	10000	91	8Z	4933*	83	89	3719*	85	100	3652
77	81	2265*	79	80	736	81	83	1925	83	90	995	85	101	5449
77	82	714	79	81	2237	81-	84	2249	83	91	1921*	85	102	2421
77	83.	604	79	8Z	2810	81	85	2928°	83	92	1329	85	-103	.1284
77	84	. 4	79	83	4 075¢	81	86	2436	83	93	1582*	85	104	329
77	85	1455	79		- 3695	. 81	87	373¢	83	94	1478*			
77	1	370	79	85	286 9#	81	88	2865¢	83	95	2201≎	86	86	10000
77	87	1796*	. 79	86	1248#	81	89	2512	83	96	1703≠	86	87	253
77		2479	79	87	2040≎	81	90	624	83	97	2809*	86	88	52Ù4
77 ·	89	340≎	79	88	28 99¢	81	91	308	83	98	· 808÷	86	89	1431
77	90	1655	79	89	5639	81	9Z	243	83	99	186	86	90	1756
77	91	963≎	79	90	945÷	81	93	304*	83	100	676	86	91	2894
77	92	1461 ≎	/	- 91	4247	81	94	1009	83	101	4800	86	92	324
77	- 93	749=	79	92	1879≎	81	95	276≠	83	102	7711	86	93	663
77	. 94	86 5*		93	866≑	81	96	107#	. 83 -	103	1346#	86	94	1176
77	95	1085*		94	316	81	97	1359	83	104	489*	86	95	3762
77	96	2917	79 .	95	207	. 81	98	957				86	96	Z12
77	97	14 95÷		96	1146	81	99	2002*	84	84	10000	86	97	597
77	98	3422≠	-	97	1005	81	100	1080	84	85	2 365÷	86	98	413
77	99	.794	79	98	563=	81	101	911*	84	86	1155	86	99	1722
17	100	1015*	79	99	613	81	102	* 51*	84	87	485 ¢	86	100	6517
77	101	2213		100	1068*	81	103.	1242*	84	88	1121*	86	101	3972
77	102	2494	79	101	5463*	81	104	588÷	84	89	4099	86 ,	102	4224
77	103	1233*	79	102	3887*				84	90	340¢	86	103	541
77	104	1481*	79	103	967*	82	82	10000	84	91	1426	86	104	1685
			73	104	1614*		83	5207×	84	92	2240≎	•		
78	78	10000				82	84	598	84	. 93	1846	87	87	10000
78	79	2672	.80	80	10000	82 .	85	748	84	94	1338	87	88	555
78	80	971	80	81	2128	82	ð 8	1681*	84	.95	707	87	89	641
78	81	154*		82	1922*	82	87	. 236*	84	96 ·	911	87	90	293
78	82	401	80	83	984	8 2	88	1026*	84	97	881	87	91	1892
78	83	442	80	84	56÷	82	89	1556	84	98	44 9*	87	92	374
78	84	2007*	80	85	463	82	90	1369	`84	99	1199*	87	93	76
78	85	2071	· 80	86	985	82	91	1284	84	100	609		94	797
78	86	457*	80	87	4884*	82	92	1076*	84	101	3056*	87	95	914
78	87	468*	80	88	2810		93				2698*			

•							• • •	•.	1.11		· ·
¥		Corr.			Corr.			Corr.			Corr
Var.	Var.	Coel.	-Var,			Var.	Var.	Coef.	Var.	Var.	Coel.
(A)	(B)	<u>(r)</u>	<u>(A)</u>	<u>(B)</u>	<u>(r)</u>	<u>(A)</u>	(B)	(т)	(A)	(B)	<u>(r)</u>
87	97	610	90	90	.10000	93	93	10000	97	97	10000
87	98	1596*	90	91	5414*	93	94	3168	97	98	5944
87	99	3054*	. 90	92	7504*	93	.95	2035	97	99	49
87 ·	100	1245	90	93	1129	93	96	697	97	100	1602
87	10+	1 32# 1			387*	93	97	2040	97	101	243
87	30Z	1464	90	95	387*	93-	98	1054	97	102	2592
87	103	308*	90	96	175*	93	99	1301*	97	103	1964
87	104	531*	90	97	279*	93	100	-1271	97	104 ~	71
			90	98	434	. 93	101	411#			
			90	99	613*	93	102	2908#	98	98	10000
68 [°]	88	10000	. 90	100	1436	93	103	863	98	99	1430
58	89	1896	90	101	2559	93	104	6980	98	100	2357
88	90	32 3≠	90	102	777				98	101	1305
88	91	32 3≄	90	103	1340	94	- 94	10060	98	102	2931
88	92	1255	· ? 0	104	894	. 94	- 95	8711	98-	103	2462
88	93	2352*		·		94	96	3416	98	104	1685
88	94	. 791=	- 91	<u>91</u>	10000	. 94	97	5240			
8	95	1328=	91	92	2497 **	94	98	1687	99	99	10000
38	96	238-	91	93	963-	94	99	296 *	99	100	93
18	97	299≎	91	94	2527	94	100	2287#	99	101	720
8	98	27*	91	95	3117	94	101	741	99	102	835
8	99	2505	91	96.	3028	94	102	2299*	99	103	2873
8	100	3310	91	97	1928	94	103	1918	99	104	929
8	101	5494	91	98]245÷	94	104 -	613*			
8	102	4005	91	99	21954				100	100	10000
8	103	2431	91	100	2917 *	95	95	10000	100	101	1103
38	104	3242*	91	101	31 36≎	95	96	2153	180	102	2376
		· ••• ·····	- 91	102	1336*	95	97	4173	100	103	154
			91	103	1308÷	95 ·	98	1827	100	104	39
89	89	10000	91	104	1938#	95	99	1611*		•	•
89	90	752¢				95	100	3399*	101	101	10000
39	91	2177				95	101	200*	101	102	6408
39	92	275	92	92 -	10000	95	102	3309*	101	103	1124
39	93	266÷	92	93	569	95	103	1366	101	104	308
9	94	164+	92	94	930	95	104	820*			
19	95 -	1128#	92	95	558				102	102	10000
89	96	1314÷	92	96	1025*	96	96	10000	102	103	47
89	97	768	92	97	1938	96	97	4247、	102	104	1406
89	98	1796	92	98	2318	96	98	3935÷			
	99	• 953*	92	99	985	96	99	1403*			•
B9	100	685	92	100	364*	96	100	133	103	103	10000
89	101	- 1440+	92	101 _	1244	- 96	1 01	1151*	103	104	628
89	102	2725*	92	102	207*	9 6	102	768			
39	103	854	92	103	171*	96	103	68*			
19	104	1733+	92	204	153*	96	104	2371+	104	104	10000

APPENDIX V

COMPARISON OF

• •	ASTE	RONAUT	AND NON	-ASTRONA	- UT PERFO	RMANC	E
	•			· ,			
				ŕ			
· ·	•	x _λ	x _N	s ²	s ² _N	F	t.
•	1	7.6	6.5	. 36	. 78	2.16	3.0
	2	7.4	7.1	. 36	. 34	1.05	12
	· 3	7.0	6.3	. 33	. 65	196	2. 1
	4	7.4	6.8	. 36	. 65	1, 80	1.8
•	. 5	7.3	6.9	. 41	. 47	1.14	1.4
	6	7.3	6, 8	. 75	~ . 52	1.44	1.5
•	7	7.1	6.7	. 51	. 56	1.09	1.2
	8	7.7	7.1	. 75	. 69	1.08	1.6
	9	7. 1.	6,8	. 85	. 78	1.08	.7
••	10	7.6 %	6.9	. 36	. 82	. 2, 27	1.9
• -	11	7.1	· 6.9	. 18	43	2, 38	.7
•	12	7.4	6.9	. 36	.83	2. 31	1.4
•••	13	7.0	7.1	• : 66	. 52	1.26	. 3-
	14	6. 7	6.8	. 41	. 52	1.26	. 3-
	15 -	7.4	6. 7.	. 36	. 56	1.55	2.2
	16	35.1	31.8	13,85	- 46,00	3. 32	1.2
24	17	36.0	31.2 -	- 18, 33	52.91	2,88	1.6
	18	29.9	28.6	22, 85	59.47	2.60	. 4
	19	14.4	14.8	4.03	2.65	1. 52	. 5-
	20	18.6	17. 1	. 70	3.86	5. 51	1.9
•	21	16.0	15.3	1. 33	1.82	1.36	1. 2
	.22	15.7	13.8	1.08	2.69	2.49	2.8
	23	15.3	15.3	5, 75	5.43	1.05	· 0-
	24	17.0	16. 3	2.00	3.73	1.86	. 8
•	25	13.7	13.4	3.08	5.21	1.69	. 3
· ·	26	15.6	14.7	2.70	5.30	1.96	. 9
	27	15.0	14.8	1.33	3. 47	2.60	2
	28	12.6	13.9	2.70	4.39	1.6Ż	1.5-
	29	13.4	13.4	3. 36	7.47	2.22	0-
-	30	11.7	11.6	2.08	4.95	2.37	.1
	31	15.6 -	- 15.0	14. 36	4.86	2.95	. 5
	32	21.4	20.3	. 5.03	11.86	2. 35	.7
	. 33	21.7	20, 8	4,08	7.47	1.83	.8
•	-34	32.0	31.0	242.66	330,65	.1.36	1
	35	90.0	86.5	77.33	69. 39	1.11	.9
	36	39. 0 ·	37.5	24.00	302.69	12.61	
•	371	. 31. 7	36, 5	160, 41	91.21	1.75	1.0-
	38	4. 3	5.3	3, 41	4,82	1.41	1.0-
	• 39	2.9	3.2	10, 51	3,65	2.87	. 3
- -	40	16. 1	14.7	45, 85	44.91	1.02	.4

WADC TR 59-505

۱

	=		7	•		
and the second	×.	x _N	s ²	s ² _N	F	
41	.9	:9	2. 51			
42	3.6	. 3. 1	3.70	3,00	1.19	0-
43	1.6	1, 4	1.70	3.65	1.01	.6
- 44	4.0	4,8	6.00	1.65	1.03	
45	3,9	2.5	8, 51	11.04	1.84	.5-
46	36. 1	. 35.0	64.18	6.08	1.39	1.2
47	0	.1		60, 47	1.06	; 3
48	3.9	1.4	. 0	.08		1.0-
49	19.3	18, 1	2,85	. 1. 34	2.12	.9
50	16.9	22, 3	29.08	22.94	1.27	.6
51	31.1		41.51	19.73	2.10	2. 5
. 52	19.1	33, 8	33, 18	18, 72	1. 77	1. 3-
53	30,0	21.3	44. 18	14, 78	2.98	1. 1
54	36.1	^{32.1}	39.66	30, 81	1.29	. 8-
· 55		. 36.0	16, 85	22, 47	1. 33	.1
56	77.3	68.4	195. 30	108, 81	1.79	1.7
57	57.3	54. 1	673, 12	278, 23	2. 42	.4
58	1494. 1	1490.9	1366, 18	2282,65-	1.67	.1
	313.1	307.5	174, 51	344, 34	1.97	.7
.59	289.6	288. 3	265.03	200, 95	1. 31	.2 .
60	242.9	246.8	330, 85	119.30	2.77	.7
61	212.9	217.4	471.85	230.69	2.04	. 6-
62	972.0	966. 0	. 862.66	2011.86	2.33	.3
63	323.1	32 <u>9</u> . 9	145, 51	472. 39	3, 24	.7-
.64	391.7	410.9	431,08	291.78	1.47	2.4-
65	1477.0	1410.0	8124,66	11523.62	1. 42	1.5
66	523.3	523.5	109.08	85. 47	1.27	1. 3 0-
67	517.6	517.1	55.70	121.47	- 2.18	1
68	776.7	804.6	3921.41	2599.82	1.50	1.2-
69	734.9	754.7	3185. 18	2266.60	1. 40	· 1 · 2 -
- 70	112.9	111.8	54.85	44.82	1. 40	
71	^ 123. 9	125.0	10, 51	14.08	1. 33	.3
73	166.7	161.4	221.08	190.69	1. 15	. 7-
74	1764. 7	1749.6	1317.75	2071.13	1. 15	.8
75	49.6	52.7	106.03	71.60	1. 57	.8 ~
76	389.6	403.2	25193. 36	40558_00	1.60	. 8-
77	84. 9	86.7	139.51	355, 43		.1-
78	10.0	10.2	19. 33	19.78	2.54	
79	104.7	113.0	68. 12	19. 18	1.02	. 1-
80	124.9	126.1	111.27		1.47	1.7-
- 81	53.7	57.3	235.12	162.52	1.46	.2-
82	1006.3	1008.5	3. 61	185.66 25.04	1.27	. 5-
83	77744.0	73480.0	60051512.00	44329932.19	6.94	1.0-
84	- 47.4	48, 0	62.70		1.35	1. 3
85	571.4	516.1	2125.70	65. 69 2500 (c	1.04	-1-
				2500,65	1. 17	2.6

,	×.	R	₩2 *	***	. , \$
1 10		4.21th, 🛢	<u>8</u> 87087, 68	3 <i>4</i> 743, 43	5,63
\$7	\$ 9, 4	24, 9	28,13	112.12	4.00
99 · · ·	41, 3	73, 8		141. 44	1. 72
	*1, 0		2141 78	\$134, 23	1. 89
9 4	7,4	3 , 4	7, 16	11,78	4. 56
,, 11	14.1	ź 9, 9	223. 34	291.49	1. 32
92 ·				. 17	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4, 9	3, 9	8, 70	22.16	5.99
94	5,0	9, 9	\$, 34	32.25	9.68
7 - 7 3	2, 9	3.1	3, 07	3 21. 30	4.24
16	\$23, 4		8808.49	1794.49	1. \$1
y7	134,.7	133,7	1 ***	2266.40	1.14
••	\$99,4 S		1 796, 36	2706.40	1. 83
,, ,,	339,7	\$12.6	1	4168.86	2.91
00	191, 9	176.1	1407, 13	322.65	4. 36
01	843.0	138,4	164.90	270.17	1.60
01	467, 7	611.0	2102.41	2201.13	1.04
01	- 34, 7	\$7.9	29.41	227.17	11.13
-		6 .6	26.41	17.65	1. 49
64	7, 7		67,71 P	T1.03	e /
	•				

mean score of the Mercury Astronauts
mean score of the Non-Astronauts
the variance of the Mercury Astronauts
the variance of the Non-Astronauts
the ratio of the variances

Legend

the probability of statistical difference

133

WADC TR 59-505

X 2 4 2 N F