1967 TINDALIGRAMS

I'm impressed by the conversational, almost chatty tone of Tindall's messages. They are so unlike many standard governmentese memoes. With great economy of words, Tindall manages to make his thoughts clear, was; to read, and memorable. He talks to his addressess as if it is understood that they are intelligent people, is often amusing as well as informative, He frequently ends a memo "at least this is the way I understand it" as if asking for corrections if anyone has any to ofter; he also aften comes right out and requests additional or differing information and opinions from his colleagues.

Some "Tindallisms" I found into resting or amusing, or thought you might be interested in knowing about:

67-FM1-5 (10 Jan.) Subject: "Significant modifications currently planned in the Apollo Spacecraft Computer Programs." End of memo mentions "Black Friday" review to be held at MIT tow days hence at which additional modifications were to be discussed. "It should be lots of fun. I'll let you know if anything interesting happens."

6/-FMi-7 (18 Jan.) Subject: "Why is it everyone who likes radar wears a white hat?" "... it seems mandatory to me that some port of range and range rate measuring system /in the Apollo command module? be provided. Of course, a complete radar would be even better ... ""I'm sure there are many who would argue that the optical system is perfectly adequate, and they can beck their arguments with all sorts of analyses. Personally, I don't believe any of that stuff, and I'm afraid waiting for the AS-256 experience will get us into the position where it is too late to fix up the command module for these AAP missions. Let's vote."

67-FM1-9 (23 Jan.) Subject: "Latest on the AS-206 spacecraft computer program." paragraph # 5 about trouble with Engineering and Development Directorate--"Response by that organization has been completely unacceptable," and T. goes on to say possible reason why ("rather informal manner in which this data was requested"). Solution: future requests to be "smothered in the usual stack of paperwork . . . " T. also ways however, that "In spite of considerable difficulty in pulling this program together at MIT," he really expects it to "perform very well for us.... I don't know why I'm sticking my neck out on a prediction like that. Just living danger-ously, I guess."

67-PMI-10 (23 Jan.) Subject: "AS-504 spacecraft computer program and storage status. Also a dash of AS-258," Memo about the MIT meeting which T. had been anticipating with some dread (see 67-FMI-5, above). Concensus was that MIT had put together an excellent presentation of current status and "a very reasonable proposal on which to base our future work." "This meeting had none of the fire and excitement of last May's Black Friday. In fact, this one is not worthy of that name." Memo includes 2 pages of eletions and requirements for spacecraft computer program. End of Memo: "At least this is the way I think things stand. And now we'll start taking calls from the audience."

67-FM (25 Jan.) Subject: "More about computer self check" "If they ever dave a contest to select the piece of Apollo with the funniest history, I would like to enter "computer self check." T. talks about the trouble with computer self check in AS=204: "Apparently if the system were left as it is now, it has the potential of bombing out the system irrevocably. I assume, or at least hope, that if it did that, it would light the little red light." (Irogic=-two days later, the 204 fire occurred.)

67-FM1-12 (25 Jan.) Subject: "Why does the AAP command module need a sextant?" "Of course, I haven't thought much about it, but . . . "; in T's opinion, the sextant is not needed-reliminating might be a considerable saving of weight and make the spacecraft a "hack of a lot better for general purpose, earth orbital missions." (Interesting that he should say he hasn't thought much about it, and almost certainly not true. Right?)

67-FM1-17 (31 Jan.) Subject: "AS-206 Spacecraft Computer Program Newsletter" Report on another meeting at MIT; interesting paragraph on page 2 about MSC being "had" by "those slick New York Yankees" -- Grumman.

Lapse of 26 days in Tindallgrams: #67-FM1-17, dated 31 Jan.: #67-FM1-18, dated 27 Feb. None during aftermath of 204 fire?

67-FM1-18 (27 Feb.) T. talks about need for new designation of boosters and missions, to replace numbers. "We will inform you of the new, more descriptive program names as soon as they have been selected." Re need for review of what is to be in the erasable memory of the ASO258 program: "That could be a fairly exciting get together since everyone wants their program in erasable. I wonder if there is a message in that observation." Re AS-206 computer program: "The MIT people have worked very hard on this program and deserve a lot of credit, both for their maintenance of extremely high standards and for their extra effort in trying to maintain a reasonable release sched,"

67-FM1-19 (2 Mar.) "On February 17th we held a meeting in our continuing effort to reduce the program development demands on the Real Time Computer Complex." In summary paragraph at end, T. says "one of the best meetings yet."

67-FM1-24, (24 Mar.) Subject: "In which is described the Apollo spacecraft computer programs currently being developed."

67-FM1-25, (27 Mar.) Subject: "None." "This action item was given MIT by FCD. We stopped it. . . . But it needs to be done . . . Will you get someone to do it? GPB, I guess."

67-FM1-26 (28 Mar.) Subject: "Progress Report - RTCC program development - Review of AS-258(!) requirements." "My primary objective here is to summarize what we did and to document, for historical purposes, the rationale behind some of the decisions made." (6-page memo, initialed at top by C. Kraft with his comment: "Excellent--Pass on!")

67-FM1-32 (21 Apr.) Subject: "Descent engine gimbal polarity error!" "A serious misunderstanding between MIT and Grumman resulted in a situation which would have been catastrophic to the AS-206 mission of the had not been discovered." Tindail seems to be defending MIT.

67-FM1-33 @5 Apr) Subject: "MIT's digital computer facilities are still a problem."

67-FM1-36 (4 May) Subject: "Some things Ed Copps is wollied about."
"Ed Copps /MIT/ called the other day about some thing that worry him.
I figure if he's worried enough to call, it's probably worthwhile to dicetate this note and send it to you. .." About automatic gimbal lock avoidance capability having been removed from CALCMANU--the spacecraft computer processor which provides automatic attitude maneuvers. "This whole business apparently scares the hell out of Ed Copps, and I guess if I knew enough I would be frightened too." (RS: you will probably understand the technicalities of the problem; I just enjoyed the way in which T. presented it.)

67-FM1-37 (4 May) Subject: "Invitation to an AAP spacecraft computer program requirements shindig." (Tindall has a way of making it all sound like such fun!)

67-FM1-F40 (19 May) Subject: "MIT can handle spacecraft computer program development for both Apollo and AAP to their mutual advantage" (3-page memo; many comments in praise of MIT.)

67-FM-T-41 (23 May) Subject: "Spacecraft computer program names!" Good, brief summary in .ghthearted Tindall tone. Starts out: "I used to think MIT was a little .id when it came to selecting names for the spacecraft computer programs with all that weird preoccupation with the sun." (SOLRUM 55, BURST 116, SUNDISK, COLOSSUS--"Pretty good except, I miss the Sun"--and SUNDANCE.)

67-FM-T-43 (26 July) Subject: "IM is launched with air!" "I guess everybody already knows this, but I just learned that they intend to launch all IM's with air rather than oxygen in the cabin . . . to reduce the possibility of fire. (Next memo, 67-FM-T-44, mentions the use of 'snel coating "to provide fire protection or at least to prevent its spread.)

67-FM-T-45 (27 Jul.) Subject: "Spacecraft computer program flow chart status." "Just a note to you ests who are interested in flow charts." Brief description of standards to be followed in the development of flow charts. "Naturally, we intend to execute any programmer whose flow charts contain a significant number of errors."

67-FM-T-35 (3 Aug.) To: FX/Acting Chief, Flight Support Div. From: FM/Deputy Chief. Subject: "Deep serious trouble." "I realize it's none of my business, and it's getting to be less all the time, but you are going to be in deep serious trouble when the MIT contract negotiations for Apollo and AAP hit the fan in the next couple of months unless you have somebody pretty sharp ready to take over for Larry Fry. Incidentally, did you or Pete Clements put Larry in for one of those awards they give outstanding Air Force officers assigned to NASA? He sure deserves it." (RS: Sounds like high proise--is L.F. anyhody you're interested in?)

67-FM-T-63 (18 Aug.) Re(LM-1: "I sure will be glad to see that bird fly before it drives us all over the brink."

67-FM-T-72 (29 Aug.) Subject: "Inflight loading of the spacecraft computer erasable memory." A 5-point memo whose last point, in entirety, is "Did I just hear the RTCC camel groan?" (Wonder what that means?)

67-FM-T-73 (29 Aug.) Memo pointing out to addressess that not even a 2- month delay is necessary between the launch of s/c 101 and s/c 103, "This note is to make sure you are aware of the situation so you won't get caught assuming a period of 3 months is necessary between the two missions. I must say this had not been clear to me before."

67-PA-T-79A (11 Sept.) Subject: "Data Priority Coordination - a plea for help." Handwritten note at bottom of first page "Bill T. A good review, pls. let me know if you need my help. G.M.L 9-27"

67-FM-T-80 (11 Oct.) Apologetic note about necessity of using SUNDISK in Spacecraft 103 as well as 101. Ends: "I can't tell you how sorry . . . "

67-FM-T-83 (17 Oct.) Subject: "Spacecraft computer program status" another of T's "irrgeular updates on what's going on in the business of
spacecraft computer program development." Currently in process of determining an accurate program development sched, for programs and determining
problem areas. "I don't want to minimize the seriousness of this situation.
We are in deep, serious yogurt!"

67-PA-T-99A (30 Oct.) Subject: "Current status on the LM DPS engine gimbal caution light problem." Two paragraphs on current status, then two pages prefaced: "The rest of this memo just fills in some background and there is no need for you to read any further except for your own amusement."

67-FM-T-106 (14 Nov.) Subject: "EMS software verification doesn't exist."
"... neither Gardiner nor Chilton conceal their distaste for the EMS (Entry Monitoring System). Both wish to see it torn by its roots from the spacecraft and flung out the window. So you can imagine the attention their people must give to it."

67-PA-T-113A (7 Dec.) Letter inviting R.V. Sperry of Bellcomm to 27 Dec. meeting at which Trajectory Control Data Priority flow charts (enclosed with the letter) for a/c 101 retrofire and reentry are to be discussed. "I hope you get a chance to review it and come down for the picnic. Please bring your own ants!"

67-AP-T-115A (15 Dec.) Subject: "Urgent recommendation that CMC /command module computer/ steering of the S-IVB be deleted."

67-FM-T-124 (18 Dec.) Subject: "Spacecraft computer program newsletter." Sequel to memo of 23 May (67-FM-T-41).

MANUTATES OF TRANSPORT AND THE CONTRACT AND THE CONTRACT

think to Parchief, Apolla Data Priority Coordination

Wejacri: Date Priority meetings schedule

In order to get a little bit more orderly in our conduct of the Trajectory Control Data Priority business, it's evident that we must schedule meetings on a pre-established, periodic basis. Accordingly the Ascent and Descent meetings will take place on alternate Tuesday afternoons; Rendesvous meetings will be held on Wednesdays, one mission in the morning and another in the afternoon (right how they will be missions "C" and "D", respectively) in the same week as Ascent. The so-called Midcourse Phase, name to be changed I hope, will take place on Wednesday mornings in the same week as Descent. All of these meetings will be approximately a day long.

Pi This sounds like a rather large time absorber because it is. However, there are a number of us who feel that the only way we dan get this thing done at all - to say nothing of being on time - is to make a fairly intensive effort for a short time. For example, aside from the Rendezvous business, I anticipate the rest of the mission phases should be pretty well squared away within three or four months and after that they will require much less attention.

3. One more thing regarding the Midcourse Phase wit is proposed that this panel's work be enlarged to encompass all preshaunch targeting associated with the lunar landing mission, all addivities in earth orbit, the TLI maneuver, the Midcourse maneuvers, the LOI maneuver and the TEI maneuver. It will not include launch and launch abort monitors ing. The reason for this is that all those activities listed, aside from TEI, are aligned to the same end objective; that is, braking into

Addressens) (Bewatterhed list) A Roward V. Tinda LL Dr

Buy 11.5. Savings Bonds Reputanty on the Payroll Savings Plan

MAY 100 COTTON

UNITED STATES GOVERNMENT

Memorandum

o : See list below

DATE: DEC 26 1967 67-PA-T-129A

FROM

PA/Chief, Apollo Data Priority Conrdination

SUDJECT:

Rendezvous meeting reminder

This note is to remind you of our Rendeavous meetings on January 3, 1968. In the morning we hope to discuss Rendeavous on the "C" mission starting at 9:00 a.m.; and in the afternoon dendeavous on the "D" mission starting about 1:00 p.m.

Moverd W. Pindell, Jr.

Addressees

CB/E. Aldrin, Jr.

C. Conrad

CF/N. R. Andersch

T. W. Holloway

P. Kramer

FC/A. D. Aldrich

R. L. Carlton

C. Parker

E. L. Pavelka

EG/C. T. Hackler

E. Smith

FM6/E. C. Lineberry

TRW(Houston)/D. Boudreau

PA: MTindail, Jr.: pj

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

097100100, PORGE NG. 12 MAY 1000 EMITION

UNITED STATES GOVERNMENT

Memorandum

Bee listsbelow

uate: DEC 2 I 1967 Stapatiliera

TA/Chief, Apollo Data Priority Coordination

alrer lift off shall be planned at discrete times only.

During our December 21 Ascent Price Taca Priority meeting we concluded that a continous launch window for 1 % or, Men the lumin surface in mis a requirement. That in, all interes planning, procedures and program is development appointed with the news wil lumir landing might on should be beaut on the ensumption that one or more discrete lift off times will be relected for each revolution of the commend module and failure to 1 rt off at one of those Correct tiem, will result in a hold to the next discrete time. Each of these lift off these vill be selected to pratice the nominal differential altitude do-ing the coelliptical rendervous? It more than one discrete lift off opportunity is provided per command module revolution, it will be obtained by extending the rendezvous opere tion another revolution with orbital adjustment maneuvers provided to militain the nominal differential willitude. (Personally, I feel one opportunity each CBM revolution is enough but that a just my opinion.) At this time, it appears that one additional revolution beyond the rendezvous scheme currently planted would produce two additional discrete windows after the nominal, one occurring 23 minutes later and the uther about 8 minutes after nominal.

E. If anyone can to make any reason why this constraint is unaccentable, they should let their concurn be known immediately. We could not think of any reason except gross emergency which would produce the circumstance wherein having missed a discrete time we would want to go to the earliest possible time an opposed to waiting for the next presclected discrete time. Of course, "anytime" launch empatility is being provided throughout the system but only for low probability or ingency situations.

Howard V. Tindol

Addresseent (dec attacket lint)

Buy U.S. Savings Pands Regularly on the Payroll Savings Pan

Biel How whord clivers the at the length of run "coops apen I would like to have dominant 1emorandum

See list below

SUBJECT:

like Choloma Carpenting lings of a

PA/Chief, Apollo Data Priority Coordination

LM rendesvous radar during Ascent in about to go over the b

1. It turns out providing justification for obtaining IM renderyous radar data during Ascent from the luner surface is an difficult an getting the data itnolf. This memorandum is to let you know that unlans some sharp cookie comes slong with sufficient justification we min't gonne get it!

There have been numerous memorands and discussions in which the requirement for time of the LM renderwass radar during powered ascent was atated primarily as a data source to evaluate the performance of the ACB and the PNGCB both by the crew enhourd the apacecraft and on the ground. In addition, intuition supported this idea and so a good deal of work has proceeded tweed on the assumption that the remigrous radar data would be available. However, due to a merica of circumstances still beyond my comprehension, the IM myscecraft computer program - Luminary - does not provide the capability for obtaining thing data. In fact, as far as I can tell it is deficient in two respects. First, no sutomatic radar acquisition capability in provided during ascent which would be mandatory since radar lock can only be acquired after the big pitch maneuver at approximately lift off plus 10 seconds, And, second, once it's locked on no provision has been made for getting the radar data onto the telemetry downlink. Luminary change requests are in the mill to add these eapabilities. However, it is anticipated that the schedule impact will be substantial, and since the current program delivery achedule is only marginally acceptable, modifications to it have to be in the mandatory category. In order to establish this justification we discussed this subject in detail during the December 21 Aucent Phose Data Priority meeting. Much to my management, mandatory dustification door not appear to exist. The rationale for this states ment is the subject of the following paragraph. The point to be made here is that unless a much stronger story one he but together, there proposed program changes will probably be rejected six rendervous radia data will not be available either during powered ascent or immediately after insertion into lumar orbit.

It had been proposed that rendervous radar data was especific to permit the MCC to monitor ascent and advise the erew of the secessity to switch from the PNGCS to the AGS. Now this would be done is thoroughly documented elsewhere but basically it was intended to determine the range rate of the LM with respect to the command module utilizing the PNGCS LM state vector and the AGS LM state vector separately, and then to compare these values with that actually measured utilizing the rendezvous radar. This information would be displayed on analog plots in the control center. The same comparison process would simultaneously be carried out with the range rate as computed and measured along the line of sight between the LM and on an MSFN tracking station. In each case, the rendezvous radar and the MSFN provide an independent data source upon which to evaluate performance of the PNGCS and the AGS. Studies to date indicate that is most cases of guidance system mulfunction, comparison against only the MSFN is adequate to identify the errant system.

The most significant exception is certain accelerometer scale factor or bins cases perpendicular to the line of sight between the LM and the MEEN station. That is, the MEEN comparison is always capable of determine ing unacceptable dispersions in flight path angle, but sometimes is not able to provide an independent measurement of the velocity magnitude particularly when inserting into lumar orbit from a controlly located landing site. The result is, if throughout ascent both the AGS and the PROCE appear to be operating properly based on all data available but at Insertion the PNRCS shuts down the APS engine producing conditions which the AGS indicates to be suborbital, it will be impossible to determine which guidance system is correct without residences radar data. Accordingly, it would be necessary to reinitiate thrusting immediately probably unling the RCS in order to provide male orbital conditions beard on the ACC rendout. Bubbequently, MSFN tracking and/or rendeavous radar measurements obtained as soon as possible will reveal whether it was the AGS or the PNGCS which was in error. If it truly was the PNGCS at fault creating an underburn at insertion the proper action will have been taken. On the other hand, if the AGS was in error the situation will be: the rendezvous enten up rate will have been decreased to a point where an extra revolution or no will probably be necessary; probably a lot or AIB/RCB fuel will have been expended and, based on the (good) PNGCB and MBFN the situation will have to be sorted out and handled on a contingency basis. This particular act of circumstances is extremely unlikely. The netion taken in under ruble but not catastrophic. It would probably require une of the command module to annist in the rendervous but RCS is being provided for that specific altuation. Rendervous radar data during ancent and immediately following insertion would have prevented it from happening but it does not appear to be mandatory [So unless this analysis

now underway disproves the above rationale, someone clae comes along with a good reason of if the Luminary program delivery impact turns out to be small, I expect these requested changes will not be made in the first version of Luminary, and maybe never. At this time I don't expect any of those things to turn out favorably. Furthermore, if we can't get this data we probably ought to simplify the RICC programs and MCC displays to be competible.

5. Finally, if we can't prove we need rendezvous radar data for Ascent, it's about certain we won't be able to for Descent either. But we do have to lave it on T/M while the LM is on the lumar surface for "launch site" position determination as Ascent targeting. This data must be at whigh upinte rate (10 to 3) samples per minute) and preferably without "improving" the spacecraft state vectors in the LM computer.

Joward V. Tindull, Jr.

Addressees: (See attached list)

MAY HAS EDITION OUR DAY HOLD ME. HE

UNITED STATES GOVERNMENT

Memorandum

TO

See list Below

DATE: DEC 18 1967

67-PA-T-126A

PROM

PA/Chief, Apollo Data Priority Coordination

SUBJECT:

Third Trajectory Control Data Priority Meeting for Spacecraft 101

Reference memo 67-PA-T-110A dated December 4, 1967. The Trajectory Control Data Priority meeting which was scheduled for December 20, 1967, has been changed to January 10, 1968, at 9:00 a.m., Room 966, Building 2 of MSC.

Howard W. Tindall, Jr.

Addresseen: (See attached list)

UNITED STATES GOVERNMENT

Memorandum

Mission Planning & Analysis Division

ri

FC5/Chief, Guidance Officer Section

DATE: DEC 16 1967

FROM

FM/Deputy Chief

SUBJECT:

Do you want a program to calibrate the COAS?

1. Charlie, I am afraid I goofed up when I sent the attached memo out open-loop. Most likely nothing is getting done. I am sending this over to you in case you would like to get one of your people to initiate the standard FCD procedure to have something implemented.

2. Incidentally, some people have apparently been discussing a procedure for doing this whole thing onboard. It involves boresighting the COAS on a known star and then calling the alignment routine which displays sextant shaft and trunion angles for that star. I gather it is not quite as straightforward as that. Since those values will be outside the mechanical limits of the sextant, it may be necessary to interrogate the memory and read out in octal. John Norton, for one, could give you more detail if you are interested.

Howard W. Tindall, Jr.

Enclosure

CCI

FM3/C. R. Hicks

T. F. Carter

FM5/R. E. Ermill

FM:HWTindall, Jr.:pj

Buy U.S. Saving. Bonds Regularly on the Payroll Savings Plan

DON OUR MES HE IN MAY HER COLLINES TO THE THE IN

UNITED STATES GOVERNMENT

Memorandum

See list below

FM/Deputy Chief

SUBJECT: Inflight alignment of the COAS

MASA-Ifanned Spicecraft Center Mission Flanning & Analysis Division

DATE: NOV 1 1 1967

67-FM-T-105

- l. As you know, the command module computer program---COLOSSUS---is being developed to permit use of the crew's reticle (COAS) as a backup reference source for aligning the IMU and for rendezvous navigation. This is to guard against some failure of the sextant and telescope as well as providing the capability to make line-of-sight measurements from the couch position as might be helpful in a one man rendezvous situation. Since precise COAS alignment cannot be established prior to launch, a provision has been made in the spacecraft program to accept and utilize its alignment as determined inflight and specified with reference to the sextant. However, it is necessary that the ground supply so-called "equivalent sextant" shaft and trunion angles. This note is to make sure that an RTCC and/or ACR computer program capability is provided or at least to make sure you know that it is expected to do that job.
- 2. The inflight procedure is as follows. The IMU is aligned using the sextant. The spacecraft is then maneuvered in attitude such that the COAS is centered precisely on a known star and the mark button is pushed to get the platform gimbal angles on telemetry to the ground. With this information, the ground is able to determine the "equivalent sextant" shaft and trunion angles. These are the angles which the sextant would have to assume to be centered on that star given that approximately on the spacecraft orientation since it would be located approximately on the spacecraft X-axis which is outside the field of view of the sextant. It is the "equivalent sextant" shaft and trunion angles which must be relayed by voice to the crew.
- When the crow later specifies to the computer that they are using the COAS, it displays these parameters which, if not correct, must be input. It then uses the optical observation obtained with the COAS just as if it were a sextant mark obtained with those shaft and trunfor angles. It should be noted that although these angles have sometimes

been referred to as COAS bias angles, they are really not biases as that term is ordinarily used and should have values substantially different than zero. At least that's the way I understand it.

Howard W. Timinll, Jr.

Addresses: FC5/C. P. Parker -FM5/R. E. Ermill

cc: (See attached list)

Memorandum

m : See list below

DATE: DEC 18 1967

FROM 1

PM/Deputy Chief

M MEGT!

Spacecraft computer program newaletter

- 1. This memorandum is to make sure you are up to date on spacecraft computer programs. As you undoubtedly know, an Apollo Bostware Configuration Control Board, chaired by Chris Kraft, has been entablished. I am the MPAD representative and Stan Mann is the alternate. There have been three meetings so far in which we have discussed and taken action on quite a large number of proposed Program Change Requests (PCR) for all of the manned mission programs.
- 2. SUNDICK Sundick, the earth orbital command module program, had been completely finished and has some through Level 5 testing. A tape har been delivered to Raytheon which they could use to manufacture the actual flight ropes. It is not our current intention, however, to make flight ropes from that tape since there are a number of changes that have been identified as necessary and some time is available to implement them. Following is a list of program changes that MIT has been directed to complete in time to send another tape to Raytheon on February 1.
- n. PCR #3 Flight Crew people stated that attitude error Indication during the first 10 seconds of flight for use as an abort one is mandatory for crew cafety. Currently, the launch program does not start outputting attitude error signals until 10 seconds after lift off at which time a comparison is made with boost polynominals prepared preflight. This program change will provide a signal to the FDAI needles proportional to the difference between present attitude and that attitude which existed at receipt of the lift off signal by the computer.
- b. FCR #24 The orientation of the CSM rendezvous radar transponder han been modified on Spacecraft 103. This program change takes into account its new alignment in determining preferred attitude of the space-craft during the rendezvous phase of the mission.
- e. PCR #37 An error was found in the formilation of the Lumbert guidance which caused long duration burns such as TPI using the RCS propulation system to be in error. This obvious deficiency is being corrected.

GUNDANCE - Sundance, the earth orbital LM program, currently acheduled for delivery on March 15 had one PCR (#30) approved the other day. The time the DPS should operate at 105 thrust (currently fixed at 16 accords) will be moved into crasable memory such that it can be modified if nome other value is found to be more suitable. This change is part of an effort underway to reduce DPS constraints both from the standpoint of guidance system accuracy and buildup of helium tank pressure. Another change (FPR #39) which the crew is anxious to have implemented deals with providing an automatic attitude control of the spacecraft during the latter phases of rendezvous such that the spacecraft Z-axis would be maintained within colliboration to the command module in addition to the 300 "dead band" currently implemented.

h. LUMINARY - The changes to the INU alignment program for Luminary buye been approved and MIT is implementing these simplifications to the crew procedures.

MIT has also been requested (FCR #4) to provide limited throttling of the DFS about the fixed high thrust throttle point during powered descent to compensate for thrust dispersions and, thus, permit a significant fuel saving. The impact for this change has been determined to be unneceptable for the first release of Luminary and MIT has been directed to implement it as soon as possible on some later version.

5. COLOSSUS - Schedule impact for the simplifications to platform aliment procedures requested by the crew for the command module (ICR #10) see determined to be unacceptable for the first release of Colossus. Acceptaintly, in this case too, MIT has been directed to implement them as such as possible - probably to be included in the second release.

to list those which I am not going to mention here. Also, I am not going to list those which have been disapproved or delayed and I recommend that there are some program changes in which you have special interest you get in touch with proper personnel of the Flight Software Branch. The name advice goes for additional information on those I have noted here, since my understanding is often rather limited. But I did want to make you aware of the more significant items.

HOWARD W. MINDAIL, Jr.

Addressees; (Generational Lint)

Addressees:
FM/J. P. Mnyer
C. R. Huss
M. V. Jenkins
FM13/J. P. Bryant
J. R. Gurley
E. D. Murrah
FM14/R. P. Parten
FM3/B. D. Weber
FM5/R. E. Ernull
FM7/B. P. Mann
R. O. Nobles
FM/Branch Chiefs

FM:HWTindell, Jr. (p)

UNITED STATES GOVERNMENT

Memorandum

NASA - Manned Spacecraft Center n Planning & Analysis Division

194/Chief. Mathematical Physics Branch

DATE: DEC 15 1967

67-PM-T-124

MVDeputy Chief

SUBJECT:

Can MSFN figure out where the LM is on the moon's surface?

Rod Rose sprung one on me the other day I would like to ask you about. He says that the MSFN should have a pritty good capability of determining the LM's position on the lurar surface given one day's worth of observation - such as during the luner landing mission. And that this could be used to assist in targeting Ascent. I am a little surprised at that and would like for you to let me know if it is really true. If some sort of study should be initiated, please coordinate it with ATBO, et cetera.

Noward W. Tindall, Jr.

FM/J. P. Mayer DO13/J. P. Bryant TM6/F. V. Bennett

FM:HWTindall, Jr.:pj

UNITED STATES GOVERNMENT

Memorandum

3704/Chief, Mathematical Physics Branch

NASA - Manned Spacecraft Center Mission Planning & Analysis Division

DATE: DEC 15 1967 67-39-7-122

-

me Deputy Chief

Majacr:

Some lunar landmark tracking questions

Associated with lunar landmark tracking with the command module optics, I have two comments and/or questions. First, I talked over our decision to delete this activity with Chris Kraft and he was relatively noncommittal. However, with regard to my comment that landmarks to the west of the landing site would be in darkness, thus invisible, he said he has looked at the mron a couple of times recently and said them with the naked eye, he could distinguish the characteristics from here on Mother Earth. The moon was one-quarter illuminated by the sun and the rest by earth shine, not dissimilar to a lunar landing situation. He was convinced that landmarks would be visible even in this kind of darkness. What do you think of that when you take into account the size and character of the landmarks we would have to use for navigation purposes?

- 2. The second item is with regard to the Lunar Orbiter photos on the back of the moon and those near the limb on the front side. Is it possible that landmarks useful for mavigation may be located with sufficient accuracy from these photographs for use on mavigation?
- 3. And one other thing that has been bugging me, that is, I realize that landmarks near the limb are hard to locate in longitude but I should think latitude accuracy would be as good as anywhere else and, for orientation of the orbital plane, latitude is the thing we need. I wonder if people took that into account when selecting them.

Howard W. Tindall, Jr.

cc: FM/J. P. Mayer FMC3/J. P. Bryant FMC/F. V. Bennett

PM:HWTindall, Jr.:pj

Memorandum

10

See list below

DATE: DEC 15 1967

67-14-T-121A

PROM

PA/Chief, Apollo Data Priority Coordination

SUBJECT:

It is proposed that we plan a two step LOI manauver.

. 1. For the past several months there has been considerable discussion regarding the question of whether we should perform the lunar orbit invertion (LOI) maneuver as a single burn or if it should be made in two steps. This is an important matter to resolve since it has impact on RTCC program development, guidence systems targeting, crew monitoring procedures, mission timeline, the mission plan, the flight plan, and mission rules. Accordingly, the entire December 12 meeting of the Midcourse Phase Working Group of the Data Priority Coordination effort was devoted to this subject. Detailed minutes are being prepared for distribution by Mr. Ronald Berry, the chairman of that working group. However, the significance of the decisions reached were such that a more immediate, wider dissemination of them warranted writing this note. Specifically, it was concluded that we should utilize a two step LOI maneuver and that it should be performed utilizing the External Delta V guidance mode. The entire justification for this mission plan modification is based on the need to provide an adequate flight crew monitoring procedure, although it is anticipated that further advantage may be obtained by incorporating dispersion killing altitude and plane change adjustments in the second LOI burn which will provide a saving of both propellant and a reduction of timeline activity.

2. Considerable analyses, thought and discussion have been devoted to how the 3,200 fps, 380 sec. LOI maneuver should be monitored. That this maneuver is performed behind the moon and in its later stages has serious time critical, flight crew safety implications presents some special problems. The most serious consideration is the need to assure in the later stages of the LOI maneuver that the SPS engine is not shut down too late. For example, an overburn of approximately 82 seconds would result in lunar surface impact. To avoid this with certainty the crew will be observing the duration of the maneuver (a clock) and the delta V counter and will be forced to manually shut down the engine when one or the other, or perhaps both, indicates a hazardous situation is imminent. Taking into account reasonable dispersions in those monitoring systems and the duration of overburn considered acceptable, it has been determined that the probability the crew would manually take over and shut down the engine before a satisfactorily operating primary guidance system gets the chance is more then 50%. This action, of course, creates a two stage LOI maneuver in

iteelf, but with a variable second stage magnitude. And the mission planner must provide for it in the lunar timeline. Since the probability of this occurring is so great, it was concluded the nominal mission plan should include a controlled, two step LOI.

- 3. Given this decision, it was determined that the first maneuver should be intentionally targeted to terminate early enough to insure that the primary guidance system has every opportunity to perform its function and to insure that the second phase of LOI is of sufficient duration to give good guidance system performance. A value of about 15 seconds was selected since it met both of these criteria and, therefore, it is proposed to target the initial LOI maneuver to provide a lunar orbit of 60 X 170 nautical miles. The second maneuver would occur approximately two revolutions later and would have a duration of approximately 15 seconds.
- 4. Another matter of significance was also resolved. Namely, it has been determined that there is very little to choose between use of Lambert steering or External Delta V steering modes with regard to delta V costs and guidance accuracy. On the other hand, the use of External Delta V does provide a real advantage for crew monitoring of spacecraft attitude during the burn which is also very important. Whereas, Lambert steering results in a continuously varying attitude with a profile which cannot be established preflight, External Delta V provides a constant inertial attitude, substantially simplifying the procedures, the training and the operation. Therefore, pending confirmation by some simple, short studies it is proposed that we establish External Delta V as the guidance mode and concentrate all effort accordingly. For example, RTCC programs associated with Lambert targeting the LOI maneuver may be deleted.

5. In summary then, given CCB approval (if that's how this sort of thing is done!) I enticipate all future lunar mission work will be based on a two stage LOI maneuver performed utilizing External Delta V with the second maneuver being in the order of 15 seconds duration.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Addresses: CA/D. K. Blayton CB/A. B. Shepard J. A. McDivitt E. Aldrin, Jr. M. Collins C. Consud T. P. Stafford CF/W. J. North C713/D. F. Orim CF2/J. Bilodeau CF22/C. C. Thomas CF24/P. Kramer CF3/C. H. Woodling CF32/T. Quillory MG/R. A. Gardiner D. C. Cheathan 1023/K. J. Cox T. P. Line EG25/T. V. Chambers MG26/P. E. Ebersole B027/D. W. Gilbert E042/B. Reina MA3/M. Kayton R. E. Levis C. F. Wasson KA/R. F. Thompson KF/T. R. Kloves KM/W. H. Hamby F. C. Littleton B. D. Sturn PA/G. M. LOV K. S. Kleinknecht PA2/N. S. Henderson PD/O. S. Maynard PD13/M. G. VonEhrenfried R. J. Ward PDA/A. Cohen PD7/W. R. Morrison PET/D. T. Lockard FA/C. C. Kraft, Jr. · S. A. Bjoberg C. C. Critzon R. G. Rose C. Kovita FC/J. D. Hodge E. G. Krans D. H. Oven D. B. Pendley

C. A. Beers

PA:HWTindall, Jr.:pj

PC2/J. W. Roach PC3/A. D. Aldrich PCA/J. E. Hannigan R. L. Carlton FC5/G. S. Lunney ು.J. C. Bostick J. S. Llevellyn C. B. Parker C. E. Charlesworth M. D. Reed P. C. Shaffer FL/J. B. Bannack FB/L. C. Dunseith 765/J. C. Stokes T. F. Gibson, Jr. J. Williams TM/J. P. Mayor C. R. Russ M. V. Jenkins FIG.3/J. P. Bryant J. R. Qurley B. D. Mirrah M14/R. P. Parten MG/B. D. Weber 705/R. E. Ermill 7X7/8. P. Mann R. O. Mobles M/Branch Chiefe BELLCOM/R. V. Sperry GAEC/A. Nachan (FM)

MELLCOM/R. V. Sperry GAEC/A. Nachan (FM) MAC/C. Jacobsen (CF) MIT/IL/R. R. Ragan TRW/M. For MR(Downey)/M. Vucelic UNITED STATES GOVERNMENT

Memorandum

70

MG/Chief, Guidance & Control Division

DATE: DEC-1 117

PROM

PA/Chief, Apollo Data Priority Coordination

MAJECT:

Mission C DAP initialisation procedures

- 1. In a memo dated Movember 28, you recommend that "DAP initialisation procedures for Mission C be established where either crew input requirements are eliminated entirely, or restricted at most to one inertia update following the largest BPS burn." I am writing you this note to let you know that what has been planned is entirely compatible I think.
- 2. As of now we do not plan to update the DAP initialization parameters at all during a nominal mission, since we all agree that it is probably unnecessary operationally. There is some concern that doing so, however, would make some of the burns more useful systems tests and we are interested in your Division's (and MIT's) opinion on this. The point is obviously we must establish some ground rules governing conditions under which we would update these parameters, and maybe they should be based on mission objectives rather than operational performance requirements.
- 3. As you probably know, the RTACY, our sumiliary computer support facility here in Building 30 which operates during the mission, has programs which will be used to continually smintain a best estimate of all the DAP initialization parameters and the capability exists to load them into the spacecraft computer via the universal uplink. If we do have to update them we will probably load them from the ground, rather than have the crew key them in.

Inclosure

cc; (See attached list)

UNITED STATES GOVERNMENT

Memorandum

70 PA/Chief, Apollo Data Priority Coordination

DATE: NOV 28 1937

In reply refer to:

PROM : 20/Chief, Guidance and Control Division

SUBJECT:

Digital autopilot initialization procedures - Mission C (8/C 101)

The Guidance and Control Division has been concerned with the amount of unnecessary initialization effort that may be required on the crew to operate the digital autopilots (DAP'S) for Block II missions. MIT has been directed to provide enboard software programs in both the CMC and LGC to update weight and inertia functions during main engine burns. At this time, the LM programs (SUNDANCE and LIMINARY) contain this self-contained update capability, but the first CSM manned program (SUNDISK) does not. MIT is incorporating the capability into COLOSSOUS although the routine has not been completely reviewed by MSC.

A study has been conducted to identify the DAP initialization procedures for Mission C and the results given in the enclosed memorandum. The objective was to develop procedures for reducing the drew input requirements for DAP initialization (SUNDISK Program).

Both CSM TVC DAP and the CSM RCS DAP were investigated to identify acceptable inertia variation bounds. The present TVC DAP has sufficient gain margin to perform satisfactorily for any value of SPS loading planned for Mission C. The RCS DAP, however, does degrade in propellant performance when the errors in inertia load exceed 20 percent. Since Mission C does not require a CSM/IM docked operation, and because the SP3 is significantly off-loaded, error input requirements are significantly decreased.

The Guidance and Control Division therefore recommends that DAP initialisation procedures for Mission C be established where either crew

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan Cry

MANUAL STATES STATES OF THE ST

input requirements are climinated entirely, or restricted at host to one inertia update following the largest also burns. Her a. Buch. Robert A. Gardiner Enclosure

THE THE PERSON OF THE PERSON O

CA/D. K. Blayton

EA/M. A. Paget PA/C. C. Kraft, Jr. R. G. Rose

78/Lynwood Dunseith

PA/G. M. LOW

PD/O. E. Maynard

B023:KJCox:dbb . 11-22-67

UNITED STATES GOVERNMENT

Memorandum

746/Chief, Rendeuvous Analysis Branch

DATE: DEC 14 1967

NASA - Manned Spacecraft Conter .

Mission Planning & Analysia Ulvision

races | Tellaputy Chief

": Extra cost of boresight TPI

You will be surprised to hear I actually reed the Gemini Rendervous Summary, except for the tables of course, and it looked like a real good piece of work to me. I do have ope question, though, regarding the conclusions listed on Page 4-1. Are we going to recommend that the crew does not boresight the spacecraft toward the target during the TPI maneuver?

Boward W. Mindall, Jr.

2011年10日 1980年 1980年 1980年 1980年 1980年 1980年

M:HWTindall, Jr.:pj

Memorandum

ru . . Bee list below

BATRI DEC 18 C37

FROM : PA/Chief, Apollo Data Priority Coordination

subject: No need to perform lunar landmark orbit determination

- 1. A number of Trajectory Control Data Priority meetings have been held on the Descent phase of the lunar landing mission. A basic question arcse early in these meetings regarding lunar orbit land-mark tracking with the command module sextant and/or telescope. It was necessary to decide whether or not such observations are required for use in improving our knowledge of the spacecraft orbital elements, otherwise determined using MEFN S-Pand observations only. And, if so, at what time must they be obtained and how would they be used? Accordatingly, a special meeting of all parties known to be interested in this subject was held on November 30 in order to answer these questions.
- 2. This memorandum is to report the results of that meeting, which I may briefly summarize at the onset by saying it was the consensus as of this time that performance of the MSFN orbit determination capability is expected to be adequate and landmark tracking for purposes of navigation does not appear to be required. Thorafore, in order to make the overall operation itself and development of the systems to be used as simple and unsophisticated as possible, it is our recommendation that we should not include this activity in the mission at least until it is proven to be necessary. That is, in establishing the manner in which the various guidance systems are initialized, verified, monitored and used during the lunar landing mission, it is reasonable to assume that tracking of lunar landmarks will not be done. Furthermore, development of the crew timeline, RCS propellant budgets, mission plans, crew procedures, RTCC programs, etc., may also omit this activity. It is very important, however, to emphasize that spacedraft optical observations of the landing site are conential at various times in the luner landing mission in order to establish its location with respect to the spacecraft orbital elements as determined by MBPN.
- 3. At our meeting, Math Physics Branch people described in some detail the current status of the MSFN lunar orbit determination capability. As you probably know, we have recently obtained a considerable amount of actual tracking data on Langley's Lunar Orbiter spacecraft which have revealed that the performance of MSFN is not quite as good as previous

proflight analysis had indicated it would be. Processing of all this data is far from complete, but there apparently is good reason to believe that the only significant error source associated with MIPN is a lack of precise knowledge of lunar potential. The effect of this on MBPN orbit determination accuracy shows up as an uncertainty in the orientation of the spacecraft orbital plane, the uncertainty being almost entirely a rotation of the orbital plane about the earth/moon line estimated to be in the order of 10 in magnitude.

- Associated with this, work is unlerwy in two areas. The first is by Math Flysics Branch people, both here and at JPI, attempting to define with more precision and confidence exactly what the characteristics of the orbit determination uncertainty really are. Results of this should be available within a couple of months for use in planning what to do if it doesn't get any better before we go to the moon. The other major effort in heing carried out by the Langley Research Center with assistance from Boeing. These people are concentrating on improving our knowledge of the lunar gravitational potential which, if successful, should significantly improve MSFN accuracy. It is anticipated that results will be evailable in the March-April-May time period.
- orbit determination empability. Specifically, at present there is any way we can directly utilize observational data in determination of appropriate ephemerides other than S-Band data obtained from the earth tracking sites. Moreover, to add in the RTCC the empability of processing optical observations of lunar landmarks obtained onto and the spacecraft would have a significant impact on the development of RTCC programs. Therefore, we concluded we should not recommend doing so. It was noted, however, that both command module optical observations and LM-on-the-lunar-surface randesvous radar observations can be processed to improve the RTCC's knowledge of the relative position of the landing/launch site based on the essumption that the MSFN ephemeris is perfect.
- 6. There was also some discussion about the onboard procedures and programs which, i.. general, sounded pretty good. There was one significant exception, however, dealing with the manner in which the spacecraft systems take into account the offset of the dealered landing site location from the identifiable landmark associated with it. It is probable that a Colombia Program Change Request will be initiated from the Descent Phase Data Priority Panel to improve the manner in which this job is carried out.
- 7. The discussions noted above were primarily to make sure overyone had an understanding of the expected capability of the systems we are dealing with. Following that we spent the rest of the time on how beet they might be used and in determining if they were acceptable. These discussions

brought out that as long as accurate onboard optical observations of the landing site were made fairly soon before initiation of descent, the mission could be carried out with no apparent extra cost of propeliant. This is because, like rendexvous, it is not necessary to have an understanding of the absolute, inertial position and velocity in space but only to have a precise knowledge of the target's relative position with respect to the current estimate of the sphemeria.

- 8. A much more diffic it problem in involved in preparing for the Accentionace. Again, it is almost certainly necessary that observations of one apacteraft with respect to the other must be made shortly before list off. Furthermore, if a command module plane change is required to incure its being within the IM propulsion capability, it will be necessary to make observations of the IM/command module relative position prior to targeting that maneuver. There is a choice of using either the command module optical device and/or the IM rendezvous radar for this purpose. Since operating the IM radar will probably conflict with other lunar stay time activities when this timeline is eventually established, it is anticipated that the command module optical device will be prime for this purposed backed up by the IM radar. But only if it is impossible to obtain the optical observation for some reason. The ETCC has been programmed to accept both of these data courses for this purpose.
- 9. There is one feature of the Ascent phase which remains throublesom. Ascent, unlike Descent, demands that at the end of the burn the IM not only be in the right place (in the CSM orbital plane) but, in addition, must have its velocity vector in the right direction, namely in or parallel to the plane of orbit. Targeting for this additional constraint may be difficult to do unless MSFM performance in substantially improved and it is not entirely certaint that adding many landmark tracking will help the situation very much.
- 10. Studies are continuing in this area to define exactly what our problem is. However, pending results of these analyses and those by the people attempting to improve the lunar potential model, there does not seem to be sufficient justification to make landmark tracking a requirement at this time, other than those of the landing/launen site. We do not propose to delete the currently planned depolitity saywhere and can add this activity back into the planning and procedures development later on if it proves to be worthwhile.

Addressees: (See attached list)

UNITED STATES GOVERNMENT

Memorandum

PAVManager, Apollo Spacecraft Program

DATE: DEC 11 1007

07-PA-T-13 TA

Sheek

MyChief, Apolia Date Priority Coordination

Name !

Apollo 205/101 reentry procedures

- I. ASPO's Systems Engineering Division wrote a meso outlining general procedures to be u ed by the Spacecraft 101 crew following a Can controlled deorbit burn and also specifying that an automatic reentry would definitely not be performed. You forwarded that meso to me questioning whether our Data Priority Conrdination group had looked into this subject and, if so, if we were consistent. I have attached a copy of our recently completed Trajectory Control Idgical flow charter for you to see. (Don't try to read it!) We expect to review them worldwide on December 20. After incorporating reasonable comments, we will review them in detail with you, Chris and Deke, at your convenience. As far as I can tell, they are completely consistent with the apirts of the FD12 meso and obviously go into far more detail.
- 2. With remard to the manner in which the reentry itself should be performed, we felt it unnecessary to specify that at this time since it is not particularly important from an operations standpoint. I'm sure the crew will do as well as the DRP, or vice versa, in closing the gap between computed guidance commands and spececraft attitude control. It seems to me that the decision to which way it should be performed should be based on the objectives of the mission instead.

Boward V. Modell, Jr.

Enclosure

PAIRWIIndall, Jr. apj

UNITED STATES GOVERNMENT

Memorandum

TO

See list below

DATE: DEC 11 1967

ST-PA-7-11(A

2004

PA/Chief, Apollo Data Priority Coordination

BURIECT!

Establishment of the Midcourse Phase Misbion Techniques Working droup

1. This memo is in confirmation of telephone conversations, requesting your participation in a continuing working group to discuss the Nide course Phase of the lunar landing mission. This mission phase includes the TLI, MCC, LOI and TEI mineuvers. The overall composition of this Mideourse Phase Mission Techniques Working Group is as follows:

Roneld Berry, Chairman CB Mike Colling Ted Guillery CF .: M Bit Smith EO Clarke Hackler K MA Pavelka FC Steve Bales Dave Masaro Gary Coen Stan Minn m Ton Hyle m Jerry Yencharia PA Bill Tindell Bob Kidd Dick Boudreau

2. The first meeting is scheduled for Tuesday, December 12, 1017, in Building 30, Room 3044, at 9:00 a.m. Its specific purpose in to entablish targeting and monitoring procedures for the LOI maneuver to be included in the overall Apollo Mission Techniques document. It is desirable, I think, to keep this working group as small as possible, however, if you feel it desirable to bring additional people from your organization, be my guest.

Howard W. Timball, Jr.

Addressens: (See attached lint)

Buy U.S. Savings Bond Regularly on the Payroll Savings Plan

GAN GOOD THOSE HE IN

UNITED STATES GOVERNMENT

Memorandum

M/Manager, Apollo Sproples Program

DATE: DEC 15 1967

67-74-T-115A

PA/Chief, Apollo Data Priority Coordination

SEE NOTE

· INTIDE

susject: Urgent recommendation that CMC steering of the Salva be deleted

Apollo Program Directive No. PA, dated September 1, 1966, which established the requirement for the command module computer (CMC) to be capable of guiding the S-IVB during the translanar insertion maneuver (TLI). The purpose of this memorandum is to recommend that action be taken to have this requirement deleted and to tell why we should do so. In summary, this recommendation is based on a conviction that the effort required to provide this capability is greatly out of proportion to the benefit to be gained by providing it. Its deletion would be just one more step in the current effort to simplify and clean up the overall Apollo program - eliminating niceties in order to concentrate our limited resources on those activities of greatest importance.

11 28 AM '57

2. It is to be emphasized from the start that the CMC MI steering can only back up a failure of the Saturn Launch Vehicle inertial platform occurring after insertion into earth orbit and prior to initiation of MI. Reliability of this component of the IU has been estimated to be .996 at time of insertion into earth orbit. This is generally interpreted to mean that in four cases out of a thousand a platform failure will occur forcing deletion of the second S-IVB burn, resulting in a primary mission failure unless we provide this backup. The message here is that it is very unlikely we would ever use this capability even if it were provided. And perhaps of more importance, it is to be emphasised that crew safety is

3. It is generally agreed that this minute additional capability would be nice to have - provided the cost is not excessive. This is not the argument nor is it questioned here and now that sufficient confidence could be developed in the backup system to permit its use. The basic point to be made is that the RASA and its contractual support is now operating at a fixed or decreasing level of effort and that the energy recuired to do this job necessarily must be channeled from something else more important. Specifically, what are these various costs? It is the analysis and deliberations required of MIT people to determine the exact formulation

cc-into-Girent

Buy U.S. Savings Bonds Regularly or the Payroll Savings Plan

of the CMC program. It is the actual programming and testing of that program integrated into the total flight software package. It is the analysis by MIT, MSFC and MSC to verify that the entire assembly - guidance and control system, propulsion system, structure, etc. - is dynamically qualified for flight. It is the planning, analysis and development of mission rules and procedures to carry out the real time systems evaluation and make the switchover decision in earth orbit. It is the development of crew procedures to initialize and monitor the back-up guidance mode during the MLI maneuver. It is the post-flight analysis to answer the question - how yould it have worked if we had used it? It is the coordination of all this, and more, and endless explainations of how it all works. It is ten thousand meetings!

- A rough estimate of the total cost of these things is given in the attached table. I am not listing them here because I am afraid that would divert your attention from the more important point. We have limited resources. The flight schedule is heavily upon us and there's an awful lot left to do for the nominal missions, the more likely contingencies and the situations involving crew safety. This low probability backup would demand attention of the same people who must do those jobs and we simply can't afford their involvement on it because its priority is too low in comparison. It's not just cost in terms of menhours and dollars but is something much more valuable a frain on our etraining resources.
- 5. The impetus for this campaign to delete CMC steering of the S-IVB came from discussions with some friends at MIT who expressed their concern regarding problems they still face in getting the program put together and flight qualified. They did not suggest that it be deleted, although they obviously concur with that idea. (It is to be emphasized that this program is not currently pacing delivery of the CMC lunar landing program [COLOSSUS] although there are some who expect it soon will. Nor is it absorbing an undue amount of computer storage.) I have recently polled a large number of other people and have found no champion for its retention, with one possible exception. That is, both systems and trajectory people of FCD, MPAD, GAC and ASPO and other interested parties, have all expressed a neutral position or, more often, concurrence that it should be deleted. Some members of the flight crew for the second and third manned missions still feel it would be nice to have, although it is my understanding there is no intention of using this capability in those missions. Now could so many people be wrong?

of providing this backup can be done but the effort required is substantial, particularly if you weigh the fact that the particular talents involved are at a premium. The benefit to be gained is so small that to carry this job further does not appear to be justified and it is strongly recommended that agreement be obtained at the earliest date for deletion of CMC guidance of the S-IVB during TLI, preferably before Christmas. ?

Howard W. Findall, Jr.

Enclosures 2

co: (See attached list)

BILL T. Believe several of

our notes, phonesells a manus have

expossed on this subject. Here

is my current— understanding:

a) you will prepare name (for

Krafth nymature on aim.") to

Phillips requesting deletion. The
expound work for this has been baid.

b) In the mean time your well obtain

Slaylow's consumence, on his specific

objection so that we am take

positive extern w.r.t. his consume

BHL 12-27

KIT

- a) Program Formulation (080P)
- b) Program Coding
- c) Level 3 and 4 Testing
- d) Level 5 Testing and Documentation
- e) Coordination MIT/MFR/MC
- ?) Development of Simulation Programs
- g) Simulation and Analysis

MABA

- a) MPAD (See attachment 2)
- b) CAD SIVE/PMGCS Dynamic Simulation
- c) CCD, FCD, FCSD, FSD

THE

(See attachment 2)

MBPC

- a) Provide MIT with math models of slosh, bending, rigid body propellant utilization.
- b) Specify MIT analytic runs to be made.
- c) Review results of MIT work for accuracy and performance

Complete

- 1 manmonth
- 3 1/2 menmonths
- 1 manmonth
 - 3/4 manmonth

(MIT maintains they are not going to do these jobs. If directed to do so, the CMC programs will slip.)

- 6+ manmonths
- 1+ manmonths

(Not estimated, not insignificant) (GCD must do "g." above)

34 manmonths

(Not estimated, not insignificant)

H

Attachment 1

TO

FM/Deputy Chief, Mission Planning and Analysis Division

DATE

File No. 67-FM13-469

PROM ?

FM13/Chief, Apollo Trajectory Support Office

SUBJECT:

Deletion of Spacecraft steered Translunar Injection requirement

As per your request, the following information has been collected to determine the impact on MPAD and contractor support manpower of eliminating the requirement for a takeover of the STV-B guidance function by the Apollo spacecraft computer. These estimates have been established quickly but should provide a representative picture of the savings to be realized. One word of caution -- eliminating this specific requirement may actually allow more attention to be paid critical areas in the onboard software development and checkout, however, whatever replaces this logic in core will have to be given the same attention in verification and checkout that was expected to be shown the original program 15.

TRW Tasks

- A=77 Empirical simulation of specific Apollo mission burn phases -Approximately 3.5 manmonths of effort remains on this task.
 Eliminating the TLI switchover requirement would require redirection of this task with a potential savings of 2 manmonths.
- A-143 Criteria for the TLI Guidance Switchover Decision -This task has just recently been revised to cover the development of the limit lines and the associated criteria for switchover decision. A deletion of the guidance switchover requirement would require a reorientation of the task to cover only the SIV-B update and possible retargeting requirement. It is estimated that approximately 12 manmonths of the total 24 manmonths of effort associated with this task could be saved.
- A-97 Independent Onboard Flight Software Validation -A deletion of the guidance and tehover requirement from this task
 would save an estimated 5 manmonths of engineering effort with
 approximately the same savings in the programmer support area.
- A-103 Apollo Guidance Equations and Guidance Simulation Support -Since the 6-Degree-of-Freedom portion of the SIV-B simulation
 program could be eliminated with the deletion of the guidance
 switchover requirement, a savings of 6 manmonths of engineering
 and 4 manmonths of programming effort could be realized.

Attachment 2

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

2

In addition to the TRW studies just mentioned, the MAB estimates a savings of approximately 6 marmonths of in-house engineering effort which would otherwise be required to essist MIT in checking out and running the 6 DOF simulation for 5/C steered TLI, in assisting FSD/MIT/MSFC in defining software test plans and in supplying target parameters (guidance constants) for the test plan. Although no other MPAD branches indicated any impact on their in-house efforts, there is bound to be some. It is just difficult to estimate. The sum total of all of this discussion amounts to about 34 marmonths of contractor support effort and 6 marmonths of in-house effort.

John P. Bryant

661

TO THE PROPERTY OF THE PROPERT

FM/J. P. Mayer

C. R. Huss

M. V. Jenkins

R. P. Parten

Branch Chiefs

MC13:JPBryant:1g

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAT CENTER HOUSTON, TEXAS 2/168

AND THE PROPERTY OF THE PROPER

DEC 7 1967

HE HERE WEREN THE GT-PA-T-1134

Bellcomm, Inc.

1100 Seventeenth Street, N. W.

Manhington, D. C. 20036 Attention: R. V. Sporry

Roberto,

Attached in a copy of the Trajectory Control Data Priority flow charta we have prepared for Spacecraft 101 Retrofire and Reentry. This is the thing we are going to discuss at the December 20 meeting to which you were cordinally invited.

I hope you get a chance to review it and come down for the picnic. Please bring your own anta!

Sinperely,

Howard W. Tindall, Jr. Chief, Apollo Data Priority Coordination

Enclosure

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

k HOUSTON, INAM 77058

IN BEFLY BEFLA TO 67-PR-T-1124

DEC 7 1967

Messachusetts Institute of Technolog*
Instrumentation Laboratory
75 Cambridge Parkway
Cambridge, Massachusetts 02142
Attention: N. R. Ragan

Dear Ralph,

Rere are several copies of the Trajectory Control Data Priority flow charts for the Spacecraft 101 Retrofite and Reentry. These are the latest version of the stuff we intend to review at the December 20 meeting to which your people were cordially invited. I have spoken to both Norm Sears and Jim Revins about this and the invitation TMX went to Dave Hong. Hope you find them amusing.

Sincepaly

Howard W. Tindally Jr. Chief, Apollo Data Proprity Coordination

Enclosure

UNITED STATES GOVERNMENT

NASA - Manned Spacecraft Center Mission Planning & Analysis Division

TO.

See list below

DATE: DEC 7 1967

67-FM-T-111

PROM /: PM/Deputy Chief

SUBJECT: Light weight IM attitude control is tot sporty.

- 1. Pete Conrad expressed concern the other day about a problem he anticipates in attitude control of the LM. This has popped up on a number of occasions previously, but nothing much gets done about it. Specifically, as Pete says, the LM is too sporty when in a light weight configuration. Minimum impulse is expected to produce about C.30/sec. attitude rates which is said to be about 4 times too fast.
- 2. I am writing this note just to prompt some more thinking about this problem which may become quite serious. I certainly don't know what to do about it. Pete suggested that we should look into differential thruster firing. First reaction to that suggestion is that it would use too much RCS proptlant. But if you consider how much will be spent limit cycling at 0.3 /sec., there is some reason to believe differential jet firing may be no worse. And, of course, they may be able to control the spacecraft which is highly desirable, if not mandatory. (Differential firing, of course, is the business of firing jets whose reactions oppose each other by controlling their difference to be the small, desired reaction in the right direction.)

3. Who has a better idea, or do you think the present design is okay?

Howard W. Tindail, Jr.

Addressees: (See attached list) MAY HAV SELTION

UNITED STATES GOVERNMENT

Memorandum

TO

See list below

DATE: DEC 4 1967

67-PA-T-110A

FROM

PA/Chief, Apollo Data Priority Coordination

SUBJECT:

Third Trajectory Control Data Priority Meeting for Spacecraft 101

1. At 9:00 a.m. on December 20, 1967, in Room 966, Building 2, there will be a Trajectory Control Data Priority meeting to review the detailed logical flow charts p. spared at MSC defining the retrofire and reentry phase of the 8/C 101 mission. Appropriate comments shall be incorporated and they will be reissued as configuration controlled documents specifying the manner in which the various guidance and control systems will be verified, monitored and used during the flight. Copies of these flow charts may be obtained after December 6 from H. W. Tindall, Code FM, Ext. 4676.

2. You and/or your friends are cordially invited.

Howard W. Mindall, Jr.

Addressees: (See attached list)

PA: HWTindall, Jr.:pj

UNITED STATES GOVERNMENT

Memorandum

to : See list below

: My Deputy Chief

MASA - Atanned Spaccaratt Genter Mission I lanning & Analysis Division

DATE: NOV 17 1987

67-FM-T-109

susject: Spacecraft computer program orbital integration

- 1. This is just another little golden nugget for your files.
- 2. The spacecraft computer programs, of course, have orbital integration routines to support operations around the earth and moon, as well as in between. The gravitation of the earth, moon and sun are treated differently dependent on which of these regions you are operating in. On a number of occasions the quention has existen as to where the boundaries actually are governing this.
- 3. I have found out that MIT currently has written the command module program as follows. When operating within about 210 nautical miles of the moon's or earth's surface the orbital integration only takes into account the gravitational potential of that body including its oblatences effects. Beyond that altitude, and up to a radial distance of \$2,500 nautical miles from the earth and 3,500 nautical miles from the moon, it mids to these the effect of the other two bodies (without their oblatemess). Beyond that distance, the oblateness effects are dropped.

4. In order to save erasable memory in the IM computer, the IM program is comewhat different. No matter two migh it is flying, it takes into account only that body around which it is operating including all its oblateness effects, but never takes into account perturbations caused by the gravitational potential of the other bodies.

Howard W. Tincall, Jr.

Addressees: (See attached list)

UNITED STATES GOVERNMENT

Lemorandum

See list below

FM/Deputy Chief

501/502 state vector update requirement

During the 501 operation apparently there was no question as to whother state vector updates would be sent. But I gather there may have been nome question as to how important they are. This will probably just add to the confusion, but I thought I might redistribute the attached memos written last January which stated that the second uplate was mandatory and that the first update was only useful to assure "that the spacecraft would at least reenter if, for some reason, the second updats rould not be made.

Mindall, Jr.

MASA - Manned Spacecraft Center

DATE: NOV 16 1967

67-FM-T-108

m Planning & Analysia Division

Enclosures 2

Addressees:

FA/C. C. Kraft, Jr.

FC/J. D. Hodge

G. S. Lunney

C. Parker

FS/L. C. Dunseith

FMJ. P. Mayer

C. R. Huns

FM7/M. D. Cassetti

FM: HWTindall, Jr.:pj

UNITED STATES COMPRESSENT

Memorandum

1 PA/Director of Filiple Operations

: FM/Chief, Mission Finning and Analysis Division

Summer: State Vector Update Criteria for AG-501

Beenuag of the destaton to utilize the Admitt Apollo public and programs for the AG-501 minuton, the minuten was dealine to the terms to on the premise that the atate vector undates would be made. There is this, the situation exists that a percent launch validle spaceers; combination without guidance or propulation errors of any kind will best about 225 mulical miles from the planned turpul. This is enused by the

inaccuracy of the opacecraft nevigation equations used on the enterest. computer (nee attached memo by Martowe Chancilla), Another Inches witch accented the decinion to been targeting on an upstated vehicle one the inability to product the time of the second Halvis burn.

MIND has been developing techniques and criteria to be used during the netual minuten for making a decision on whether or not to new the undate. The programs being developed to make this declaion are manusar and time-consuming. I recommend, therefore, that we terminde this effort since the only possibility of not meeding updates in the metant

minuten would be a chance combination of system errors in exactly the right combination to fall within the target manufrica.

If this decision is accepted, therefore, It means that It is mandatury to send updates during the bill admitted and that the complete product complex utilized for updating must be thoroughly verified before countiling the ground system for flight operations.

Another item to note in the attached memo to the reveletion that THI errors prenter tonn appetriention 3 siems valued may result to no not acceptable heating test.

Enclosure

(Bon attached lint)

Enclosure 1

rA/ J. F. filen

PM/ O. E. Maynard

PM2/C. H. Purrinc

EG/ R. C. Duncan

FC/ J. D. Hodge

FC/ G. B. Lunney

FC5/Lynwood Dunseith

PM: JPM: (b)

PM/Chief, Mission Planning and Analysis Division

January 20, 1967

67-FM7-6

PMT/Acting Chief, Guidance and Performance Branch

State vector update situation for AS-501 and AS-502

- 1. The AS-501 and 502 missions have been designed to update the state vector (position and velocity) in the Apollo Guidance Computer (AGC) with a state vector from the Manned Spaceflight Tracking Network (MSFN) prior to the Saturn (S-IVB) out-of-orbit burn and again prior to the second Spacecraft Propulsion System (SPS) burn. If these updates are not transmitted from the ground the AGC will use position and velocity estimated from onboard navigation equations. Because of the inaccuracies of the navigation equations, even with perfect Inertial Measurement Unit (IMU) performance, a perfect vehicle will fly different trajectories depending on which combinations of updates are transmitted.
- 2. The attached table illustrates the deviations of four trajectory cases with various combinations of updates. Case #? (no updates) has actual reentry conditions close to Case #1 (both updates) but the AGC navigated state vector is in error. Case #2 was propagated through the reentry phase and the Command Module could not achieve the desired landing point and the actual impact point (IP) was off from nominal by 225 nautical miles. At splach the AGC's estimate of the IP was in error by about 120 nautical miles (a similar run from MIT resulted in 90 nautical miles for this error).
- 3. Case #3 (first update only) indicated a large improvement over the no update case and Case #4 (second update only) brings condition back to the nominal (both updates) performance; however, in order to draw proper conclusions from these four cases, the performance of these cases with IMU errors must be examined.
- h. The two update mission (Case #1) with the IMU performing at specification values has an entry flight-path angle error of ± .53 (3g), which produces a marginal first heat rate test. Case #2 with dispersions has a good probability that reentry will not be achieved. (That is, the minimum altitude is greater than 400,000 feet.) Case #3 will have about a thousand mile IP dispersion. Case #4 will have entry errors slightly larger than Case #1.

3-45

Enclosure 2

5. The second update is mandatory to insure a high probability of achieving the required 501 test objectives. The first update assures that the vehicle can be recovered in case the second update is not received as planned. In other words, you must send both updates.

Marlove D. Cassetti

Little Harparate Countries in the Countries of the Countr

Enclosure

ec:

FM/H. W. Tindall, Jr.

C. R. Russ

M. V. Jer ins

J. F. Dalby

R. P. Parten

J. P. Bryant

MPAD Branch Chiefs

FM7:MDC:svp

United States Government emorandum

See list below

PA/Chief, Apollo Data Priority Coordination

67-PA-T-1074

SUBJECT: Some assumptions about Spacecraft 101 retrofire and reentry procedures

1. We have recently held several small Trajectory Control Data Priority Working Group meetings dealing with Spacecraft 101 retrofire and reentry. The results are being documented to show how the various guidance and navigation data sources will be compared to one another and used during the mission. During these discussions a couple of basic assumptions have been made which I thought might be advisable to disceminate.

2. MCC computer programming, procedures and mission rules are being established based on the assumption that if it is necessary to retroilre and reenter without the GAN either because that system has failed or because there is insufficient time to bring it on line, the retrofire shall be performed SCS auto mode and the reentry shall be ballistic. (It is assumed that at least two hours and forty minutes, including two periods of darkness, are required for retrofire preparation.) Accordingly, the retrofire time will be computed based on the reentry to be performed by either continuously rolling or by atilizing a 90 bank angle and a time to reverse it.

3. Associated and onsistent with this basic assumption is the procedure that if a PNOCS failure is detected at the horizon alignment check performed at TRetro minus 5 minutes and voice communications are available with the ground, a ballistic reentry will be utilized. The compatible retrofire time will have been determined previous to this event and relayed to the crew, the slip in time being approximately 2 minutes. The obvious objects to of this procedure is to reduce landing point dispersion resulting from a lifting reentry without guidance, and it was felt that with solid ground assistance the delay in retrofire could be accomplished. Simulated exercises will prove or disprove this.

It is assumed that the role of the EMS is solely associated with monitoring and it will not be used directly in control of the spacecraft nor in evaluating performance of other spacecraft systems. There had been some question as to how its roll reference would be initially ulimed. It is currently proposed that the nominal reentry bank angle of 55 will be loaded into the EMS and that the spacecraft will be oriented to that bank angle at the time of .05 g's when the pilot initializes the EM:. He will then rell to the post-retrofire backup reentry bank angle as dotermined by MCC and/or onboard charts.

Howard W. Tinin11 . Jr.

Addressees: (See attached list)

Buy U.S. Savings Bonds Regularly on the Payroll Serings Plan

UNITED STATES GOVERNMENT

Memorandum

PA/Director of Flight Operations

Moderaty Chief

from a squeetial beds issist Pleaning & Analysis Division

DATE: NOV 1 4 1967 67-374-7-100

.DB software verification doesn't exist

- 1. I am pretty sure the verification of the Entry Monitoring System (Hei) scrolls is screwed up and I am sorry to say that, even though I suspected it for quite a while, I have not gotten around to doing much of anything. As soon as Bob Gardiner gets back from the Cape, Claude Graves and I will go talk to him. I'm pretty sure that no one besides: MA can gonerate the lines for the scroll nor can anyone but MAA figure out if the minufacturer put them in the right place on the scrolls. I've attached an NAA letter, which I'm sure they must have written tongue-in-cheek, that pretty well chove what I mean.
- 2. Claude Graves and his people can do some checking but only to the extent of plotting different reentry trajectories as they would appear on the MB and looking for possible violations. But this could certainly not be considered verification of the "software," which, in effect, the INB serell lines are.
- This note is just to alert you to the situation. I will let you know if I cannot get things straightened out. Personally, I think it would be desirable to have G&C report EMS status to your Software Change Control Board. One final remark, perhaps worth making, is that neither Cardiner nor Chilton conceal their distaste for the BB. Both wish to see it torn by its roots from the spacecraft and flung out the window. So you can imagine the attention their people must give to

Enclosura

FM5/C. A. Graves

PM:HWM:ndall, Jr.:pj

Best V.S. Saring Buch Regularly or the Pornall Saring Plan

Memorandum

Cae list below

MVDeputy Chief

inflight alignment of the COAS

NASA-Monned Spacecraft Conter

NOV 14 1967 67-11-7-105

1. As you know, the command module computer programma-COLOSSUS---18 being developed to permit use of the crew's reticle (COAS) as a backup reference source for aligning the DE and for rendesvous navigation. This is to guard against some failure of the sextent and telescope as well as providing the capability to make line-of-sight measurements from the couch position as might be helpful in a one man rendezvous situation. Since precise COAS alignment cannot be established prior to launch, a provision has been made in the spacecraft program to accept and utilize its alignment as determined inflight and specified with reference to the sextent. However, it is necessary that the ground supply so-called "equivalent sextant" shaft and trunion angles. This note is to make sure that an RTCC and/or ACR computer program capability is provided or at least to make sure you know that it is expected to do that job. "

The inflight procedure is as follows. The DU is aligned using the sextant. The spacecraft is then maneuvered in attitude such that the COAS is centered precisely on a known star and the mark button is pushed to get the platform gimbal angles on telemetry to the ground. With this information, the ground is able to determine the "equivalent sextant" shaft and trunion angles. These are the angles which the sextent would have to assume to be centered on that star given that spacecraft orientation. Of course, it is impossible for the sextant to view the star with that spacecraft orientation since it would be located approximately on the spacecraft X-axis which is outside the field of view of the sextant. It is the "equivalent sextant" shaft and trunion angles which must be relayed by voice to the crew.

3. When the crew later specifies to the computer that they are using the COAS, it displays these paramters which, if not correct, must be input. It then uses the optical observation obtained with the COAS just as if it were a sextant mark obtained with those shaft and trunion angles. It should be noted that although these angles have sometimes

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

The state of the s been referred to as COAS bias angles, they are really not biases as that term is ordinarily used and should have values substantially different than zero. At least that's the very I understand it. Addressees: PC5/C. B. Parker PM5/R. B. Ermill cci (See attached list)

UNITED STATES GOVERNMENT

Memorandum

TO :: See list below

: The Deputy Chief

MASA-Manned Property Continue
Minutes Planning & Many Continue

BATE: NOV 14 1967 67-20-7-104

KEJECT:

Spacecraft computer program design to process VIP ranging for rendervous navigation

- 1. On November 1, 1967, a team of NEC people were at MIT to discuss, among other things, use of the VRF ranging data in the spacecraft computer. Specifically, we reviewed the work MIT has done in this area since our "tiger team" meeting on October 5. Steve Copps is the guy at MIT responsible for incorporating this new requirement into Chapter 4 of the OSOP. He has nearly finished this but has not reviewed it in any detail with the programming people. He did make a point of emphasizing some assumptions he has made and I am writing this note to make sure you are aware.
- 2. The first matter deals with getting the data on the downlink. The only channel for sending VHF ranging data to the ground is through the spacecraft computer. However, Steve Copps is setting up the program such that, unlike the LM, there will be no special program in the computer solely for getting the ranging information from the VHF device and putting it on the downlink. It will only get on the downlink if the rendezvous navigation program is in operation. Doing it this way is said to be the easiest and least complex but means that VHF range data will not be transmitted directly to the ground when "average g" is running (during the final phase of the rendezvous and during burns) or when in the platform alignment programs.
- 3. The second point Steve emphasized was that precisely the same data acceptability test is used on all rendezvous navigation data sources—sextant, telescope, reticle and VMF range. As you recall, each individual observation is processed and changes in the state vectors are computed. If this change is in excess of some test values (preset in erasable memory) the craw is given the option of rejecting that data. The test values are the same for all data sources.
- 4. Steve also noted that there is no VMF maximum range test governing the computer's use of the data. This function is left to the crew to make sure that the computer does not receive data in the second range interval, that is, beyond approximately 400 miles since it will be wrong by about that amount. Supposedly, the VMF is only designed to work to 200 miles anyway.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

5. Finally, MIT will attempt to display the number of sextant and Vip range observations separately as two digit integers in the same DBKY register separated by a sero or a blank. If anyone sees anything wrong with the above design assumptions, he better inform PSD personnel immediately as well as supplying justification for going in some other way. As of now, MIT has been told that these assumptions are acceptable to MBC.

Howard Wa Tindell, Jr.

Addressees: (See attached list) MAY 160 EDITION

UNITED STATES GOVERNMENT

Memorandum.

. Mee list below

- MVDeputy Chief

MASA - Maitted Procedure Conter Mission Planning & Analysis Chylsic

DATE: NOV 11 1967

67-FM-1-103

subject: MIT/MSC review of LUMINARY Descent Programs

I. On November 2, 1967, a team of Flight Crew, C&C and FOD people met with MIT to discuss the lumar landing descent programs. We have recently been reviewing these programs at FSC and it has become evident that many of the displays and associated computations which we had listed as requirements early in the year are not. That is, apparently insufficient thought was given at that time as to how the system would entually be used. We did not intend to insist upon changes that would make the MIT schedule situation many critical but rather to identify those things he were confident we would not need and would then leave it to MIT to decide whether to delete them from the first edition of the LUMINARY program or host. There was a strong impression that MIT would probably make most of the possible deletions, but we asked them to take as much time as necessary to review the situation and tell us what they intend to do, formally, in writing. I personally fell that the meeting was very worthwhile and should result in a much better program requiring considerably less MIT effort to complete.

- 2. Several items were discussed extensively which I thought might be seen a recording for my own records and perhaps your importation. The remainder of this memo will be devoted to them.
- 3. One of the Items we spent the most time on had to do with crew procedures agnociated with the out-of-plane situation existing furing descent. Proposais and been made to display quantities to the crew prior to inttintion of brakfa which would enable him to plot the approach trajectory on a strip chart of the lunar surface, taking into account the existing out-of-plane situet on. There was considerable akepticien during our discussion inch visual monitoring of the luper surface as it stronge by would be of much Value in determining performance of the systems, what for abort, or for any other really useful function. The situation is somewhat equivalent to like in altitude pass over an unfamiliar desert at Mach-1 lith lots of other ingrest. ing things coims or inside the cockpit. Pete Considering to review this whole business with PCSD people and the Astronaut ciries to make sure the action we proposed at MIT was okay, namely make the display of delta R a requirement --- to be computed exactly us now formulated in the MIT programs Specifically, delto 3 to the perpendicular distants of the landings to position vector from the LM orbital plane. This country is a splayed in P-63, prior to 103 ignition, and may serve as an indicator to the crew of reduction in hover tips they co expect due to use of propertion for their change. And it may also be upoly? for some sort of lumar surface action

recommend deletion of the entire 3-register display format containing delta R at MIT's option. We definitely don't want to change the definition of delta R from that given above.

- h. In response to my question regarding the computer's test to determine whether or not to use landing radar data, MIT stated that it was made on the computed value of altitude based on the spacecraft navigation starting prior to DOI. Considering the flat approach trajectory and the possibility of relatively large error in computed attitude due to uncertainty in the hunar radius and degraded MSFN performance, it is possible that radar data may be accepted much earlier or later than it should be. This is just a remark about a cituation which perhaps deserves some investigation. It is not a proposal to change anything at this time.
- 5. It is understood that the delts V monitor program in the LGC will only send an engine off command in one of the P-40 series thrust program. In the other thrust programs---ascent, descent and abort---it will only issue a program alarm since erroneous engine off commands in these time critical mission phases could be catastrophic.
- for redesignating the landing site location with the hand controller. Pete Conrad was concerned that the stick could be deflected accidentally causing the targeted landing site position to be moved unintentionally. In order to avoid having a "how stick" when it may not be needed at all, it was decided to slightly modify P-64. To be consistent with standard PNGCS operations, the P-64 display will be made a flashing display, thus, requiring the crew to hit Proceed if he wants to redesignate the landing site. It is only after this crew input that stick motion would be regarded as a logitimate request for landing site relocation. Following the input of Proceed the display stops flashing and the stick remains hot thereafter. The crew would only hit F. seeed if he wants to redesignate, of course.
- 7. Another item on which we spent a considerable amount of time dealt with "Delta V Margin." MIT proposed to provide an on call display which was the LCC's prediction of delta V remaining at touchdown converted into hover time margin. Its primary use was to inform the crew of the fuel cost they have incurred by redesignating the Landing site. The discussion brought out that this computation is really not particularly accurate. Furthermore, it was anticipated that allowable landing site redesignation would probably be coverned by mission rules. However, this lengthy discussion revealed that it should be possible to make a fairly accurate prodiction of how much fuel

in required from present time until touchdown including the effects of landing site redesignation. This display could be made to automatically appear after each LDP action. The crew could compare this with the fuel gauge, which is considered to be fairly accurate, giving him an indication of whether or not he had sufficient fuel to complete his landing as currently specified. It was agreed that this parameter should be added into the Pack program display format provided there was no schedule impact, excussive storage requirement or any program development trouble. At first incident of any of these it would be dropped. It will be displayed in units of "revecat" fuel in order to be compatible with the fuel gauge and will take the place of Dalta V Margin previously requested.

3. At one time it was proposed that when the craw detected there was no relative velocity of the spacecraft with the moon's surface, they would input this fact to the computer which wald seen the velocity state vector. This was included in Chapter 5 of the LEMBARY GOOP but not in Chapter 4. It was determined that this was not a computer program requirement and will be deleted from Chapter 5.

Howard W. Thodall, Jr.

Addressees: (See attached list)

MAY HER BOTTON
ON OUR BOTTON
ON OUR BOTTON

UNITED STATES GOVERNMENT

Memorandum

NASA-Manned Spacicraft Center Mission Pleaning & Analysis Division

to . ! Bee list below

BATE: NOV 08 1967

mon it me/beauty think

Wajacr:

Spacecraft computer program 105---on the day out

During a meeting of MSC people at MIT on November 2, it was brought up by MIT that some problems were being encountered in the development of POS, the program which assists the netroneut in turning on the primary quadance system. Although these problems are relatively minor, it was the opinion of MIT that this program contributes little, if anything, to the operation of the spacecraft and it was their suggestion that we delete it from COLOBSUS, LUMINARY and SLAMANCE. The consensus of MRC people present was that this was a good idea and it is probable that the Flight Support Division will so direct MIT unless someone comes along to protect it. I am writing this mote primarily to give you that opportunity-soif you like FOS.

Boward V. Trodail. Jr.

Addresses: (See attached list)

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

UNITED S

United States Government

Memorandum

MASA-Mannel Spacecraft Canter Mission Planning & Analysis Division

FAG3/Chief, Apollo Trajectory Support Office

DATE: NOV 08 1967 67-M-7-101

e C. D. vidae

PM/Deputy Chief

WaleCT!

What is the effect of uncertainty in the lumar potential on spacecraft computer program performance?

- 1. Sig Sjoberg called efter reading my memo (67-74-7498) regarding the impact of current MSFN performance on lunar operations. He wendered why I had not included in my list of studies the effect of lunar potential uncertainty on the spectoaft computer programs. I guess the reason I left it out was that it was somewhat different than those. Specifically, I suggested that we do the analyses listed utilizing current MSFN performance regardless of its cause. However, it would probably be useful to make some estimate of the uncertainty in the lunar potential based on our MSFN experience and use that in some additional studies.
- 2. Two studies that I can think of specifically are (a) the determination of the effect of uncertainty in lumar potential on the onboard computation of the landing site position, particularly its distance from the center of the moon, and (b) determination of the effect of uncertainty in lunar potential on the capability of the LCC to integrate the equations of motion from the time it is initialized prior to DOI until landing--with and without landing radar update. I assume both of these tasks should be assigned to the Math Physics Branch. Perhaps you could request them to expand on them and add others that haven't occurred to me.

Enclosure

cc: (See attached list)

Buy U.S. Savings Bonds Regularly on the Paynoli-Savings Pl.in.

Pill/Chief. Apollo Brajosiony Support officer

MARI OCT 27 1967

FROM E PHOPPHRY Chief

Lat's find out if the current MEFR performance is stelly lot good want

On Parish, Cotober 16, we had a highering by the Math Proutes & the cather performance of MERI tracking the turns Craitive At. An environmental cubically space, orbit determination of that exhibite comments are in an arcile type orbit, became a return uncomment affect the lateralist to determine who is a curring Crait Country for a lateral control of the tracking in that the orbital of white provinces for a river of the tracking to the rule tanking it depend my on the amount of the processed in the orbit determination.

Steps are being talen by Jim 10. In From to wall place and of the establishment in the profit executive In trying to recoive the profit particular. I appears that the lamb property is the ball of the lump potential. Anticipation that we take in improve and in the house of the lump potential. Anticipation that we take a land appearance of a surface of the contraction of my try out to be an experience of the original land of uncertainty we are experienced and with the Mirk on cost of the contraction. For example, it is not clear to me that gives in the cast ordered and an end of the contraction of the computation compility has some that gives in the fall of the contraction of the contractio

i. Specifically, I request that you initiate motion from many or less

1. TAR - Evel rate the effect of correct degree vitor of process of the ETM orbit letermination equalific or length and corrections. Come parameters of Educated a for the confection about the V budget, resultant dispersions in the temperature about the operation, increased dispersion in the temperature temperature of the parameter, resultant nairs in the temperature leaves of the spacecraft, resultant nairs in the temperature leaves of the spacecraft.

Linkosure

But U.S. Sarings Bouch Regularly on the Cornel Springer than

and the associated change in lighting conditions. And other parise been at that ilk which personnel of FAR three lives are in a mich better position to specify.

The RAB and/or MAR - Evaluate the effect of the deprised MTR is fellance we are now experiencing in the determination of speccent rest victors on the targeting and execution of the Descent Crist lies et a zaneuver. Then determine the impact of the on uncorrective as a first the desired landing point and no will no increase in providing use it likely to result from altitude dispersions encount arm at it is taken descent braiting.

at Mik - Evolute the effect of departed Mill performer in any new experiencing on ground they sting of the lambaneth indirector (MI) removed. Probably the puremeter of much interest will be the thermore in delic v cost in the mideourou correction members a resulting from a dispersed This.

d. Mr and/or APB - Evatures the effect of degraded MIFA performance we are now experiencial on group's multivator of the descent and ascent powered 11 jet phases of the larger lasting microst for purposes of advising the crow of guidance system performance and need for switchower.

Howard Waden

rc: (3ee attraked list) UNITED STATES GOVERNMENT

Memorandum Memorandum

Coe List below

MATE: OCT, 30 1967

MASA - Managed , Specifically Co.

PROM : MYDeputy Chief

suspect: Pinal word on the targeting of the externally targeted prothest spaceeraft computer programs

- 1. This note is to make sure that everyone who needs to know does know how we are actually implementing the general purpose prethrust (targeting) programs in the spacecraft computer programs SUNDANCE, LIMINARY and COLOSSUE. I thought it would probably be worthwhile to pass the word since so many different proposals and tentative decisions have been made before, during and since the GEOF review for those programs.
- 2. There are two prethrust programs being provided, both of which require targeting from some source external to the spacecraft computer. One of these, P-30, is the External Delta V program which can be targeted either by crav input via the DCKY or from the ground through the uplink commond program, P-27. The targeting consists of the following parameters: time-of-ignition and three complements of delta V is a local horizontal space-craft centered coordinate system.
- 3. The other program, P-31, may only be targeted from the ground. It is to provide the capability of inputting Lambert targets for a maneuver to be executed (steered) in that mole. There is no capability for the erew to imput targeting to this program wis the DERT directly. Of course, it is possible for him to use the rather swinerd procedure of going through P-27, if he chooses to do so. The target parameters consist of time-of-ignition, a position vector consisting of three quantities, in an earth or moon centered inertial ecordinate system, and the duration of time which it is desired for the spacecraft to consume setting to that position. These are all double precision, octal quantities. Those responsible for NTCO program development please take note, since at one time it had been proposed that some sort of pseudo-External Dolta V targeting be used for this program.
- 4. I would also like to emphasize that it is currently not our intention to eliminate either steering myle-i-External Delta V nor Lambert. As a matter of fact, it is my understanding that deletion of either one of these modes would save very few, say less than a bupdred, words of storage.

Roward W. Tindall, Jr.

Addresseen: (See Attached list)

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

Memorandum

FA/Manager for IM
Apollo Spacecraft Program

DATE: OCT 30 1967

mos : PA/Chief, Apollo Data Friority Coordination

suspect: Current status on the LM DES engine gisbal caution light problem

- In This semorandum is to report the results of a very brief investigation into the adequacy of the LM is deent Propulsion System (DPS) engine gimbal contion light. Briefly, this light sever on if a difference between the gimbal drive eigent and the pinion componer signal from the Y or 2 existrance malfunction logic to sensed. This signal is embled only if the descent engine is armed. Once the sixtal caution light is on, the crew must determine if there is a display deliver or a true gimbal failure. The basic question involved is what are or not practical procedures can be established utilizing only the existing appropriately existence to make this decision during a larger landing measurer, or it some sort of modification is ancessary in either the spacecraft meriware or computer program. The specific change must frequently suggested in the addition of gimbal angle position indicators on the cockpit despicerd.
- In summery, the MSC concensus is that probably crew and ground procedures can be developed and certainly immifficient justification exists right now to establish a mandatory requirement for any modification to spacecraft systems. Work is now to be initiated to develop these procedures in detail.
- 3. The rest of this memo just fills in rose background and there is no need for you to read any further except for your own ammicment.

h. The Problem

For some time, a year or more, Plight Crew and Flight Control people have been concerned that the engine gimbal caution light provided a single one for a mission abort situation. It was felt that the crew abould be able to assers the situation and take proper action independently of MCC, where actual gimbal angle deflection information is available via telemetry. This assumption was unde not so much to summi against dommunication valure as in recention of the fact that the probable time lag between the event and receipt of MCC advice is between 10 and 15 seconds. At least one formal attempt to improve this choosed combility was made early this year during a IM-2 (manned) review at which it was requested that some means be provided for verifying descent giment drive electronic assumbly (GDA) failure. It was noted that the precent flesses could result in mission abort with no actual systems failure. This was turned down and GAC was given the action item of establishing some procedural substitute

by April 18, 1967, possibly with the help of MIT. MIT facilities were not available for this purpose and recently Ken Cox (G&C) has taken steps to obtain assistance at Grumman utilizing their hybrid simulation facility.

On October 23 and 24, Flight Crew, Flight Control, MPAD and G&CD people reviewed the situation. In addition to defining some tentative ways of using the existing design (discussed in some detail later), possible changes to spacecraft systems were discussed which we ultimately eliminated as not presently justifiable. They included the addition of new LGC DSKY displays such as jet rate number (an indication of the extent of RGS jet activity) and/or the addition of direct readout of gimbal position in the cockpit. The latter would be provided through use of the existing gimbal angle sensing potentiometer or by a completely redundant system. There was also a question of whether new cockpit indicators would be needed or if existing indicators could be used such as the cross pointer which is already required for display of forward and lateral velocity in this phase of the mission or the FMI needles which are also used to display attitude error and/or attitude rates.

6. Tentative Procedures with Existing Design
It is anticipated that the procedures are different depending on how far into the Descent braking phase of the mission we have gotten.

a. Early in descent, when the situation is relatively non-time critical, there are two schools of thought. One is, when the light comes on, the crowwould do nothing immediately. If the engine gimbula are truly running away the burning momenta would eventually exceed the capability of the RCS to maintain attitude and the apacecraft would begin to rotate. Given this "second one," the crew would immediately nwitch to manual throttle control. dropping thrust to 10% which is within the capability of the RCS to maintain attitude, and would disable the simbal drive motors. An abort would be necessary. If the glubals are frozen or working correctly (false light indication) the mission phase would be continued. The alternate proposal is that the crew would immediately descrivate the gimbal drive motors when the light comes on and swalt advice from the ground and to the situation. It was felt that tele might permit continuing on to the Landing with without frozen or min away gimbala if sufficient RCS propellant was available to provide all necessary attitude and steering control with no further movements of the DES angine gimbals. (Of course, this would recessitate a capabilate on the ground of predicting adequacy of the RCB propellant through the rest of the lunar operation.) If the ground determinen that the fullure was in the warning strenttry as opposed to the gimbals, they would advise reactivating them immediately.

b. During the inter stages of the Descent braking meneuver, probably some time following high gate when the situation is time critical, the action would always be to descrive the engine glabal as soon as the light comes on. This is obviously necessary in order to prevent loss of spaceeraft attitude control due to a runway glabal which could create a serious graw safety situation. Mission rules would govern whether to proceed on to landing or to abort dependent on the situation—stime, position, velocity, gimbal misslighment, fuel remaining, etc. Thus, even runeway gimbals may not force an abort provided thrust is not aligned too far from the cg.

T. To complete the rudord, it should be noted that the ICC does receive an in-bit indicating the DFB gimbel failure at the same time the gimbel caution light is turned on, but it is currently programmed to ignore this signal and to continue sending steering commands to the DFB gimbal motors. If the arew disables the cimbal motors, a signal in also sent to the LCC which immediately stops sending commands to the DFB gimbal drive. (In fact, I might as well pass on something we learned, although it's not perticularly pertinent to this matter, namely at any time the DFB is thrusting, provided the crew has not disabled the gimbal drive, the digital autopilot always aftempts to keep the DFB thrust vector slighed through the spacecraft cg, even when the manual mode has been selected for attitude control.)

8. It is obvious we have not heard the end of this matter. At the lenst, detailed crew and ground procedures must be precisely defined. However, based on discussions we have had, I would be very surprised if the basic conclusion noted in paragraph 2 above turns out to be wrong.

Howard W. Tindall. Jr.

cc: (See attached list)

MAGRET

UC? ... 15

PROM IN PROPERTY COLOR

Susject Lee's find out if he elected Milly performing to really not good the land operations as

Apollo, Britishes & Supplies Jacks

I. On Monday, October 15, we had a brighing by the Math Physics on the performance of MSR tracking the Lunar Orbiter. Is you are fountedly names, croit determination of the vehicle, once the and a finite Apollo type orbit, became a rather or estimate affilir and in not yet been able to determine what is causing the trackle. The of the trackle is that the orbital elements produced for a fuent are said to be an stantially different departing on the amount of processed in the orbit determination.

entific community in trying to revolve this prefilem it appears feel their most fruitful line of attack is an entitled at a new the lunar potential. Anticipating that while we have a some or not entirely satisfact my or may turn but to be a some of the pothips better in another direction. Runely, what is the effect of the court of uncertainty we are experiencing now with the minute cant onbeard sensing and computation temporally the cast of the court of th

3. Specifically, I request that you intitate across as follows:

of the MSFN orbit determination capability on lunar or operations. Some parameters of interest are thorough.

V tudget, resultant dispersions in the trajectory much ofliptibity and dispersed differential altitude for your operation, increased dispersion in the same trajectory board the spacetra of the same trajector of board the spacetra of resultant which in Total contents of the same trajector of the spacetra of the spacetra

Y

Bick 1

A PROPERTY OF THE PARTY OF

and the associated change in lighting conditions. And other parameters of that lik which personnel of RAB themselves are in a mich better position to specify.

- b. RAB and/or MAB Evaluate the effect of the degraded MSFN performance we are now experiencing in the determination of spacecraft state vectors on the targeting and execution of the Descent Orbit Insertion (POI) maneuver. Then determine the impact of that on uncertainty in obtaining the desired landing point and as well as increase in propellant usage which is likely to result from altitude dispersions encountered at initiation of descent braking.
- experiencing on ground targeting of the Transcarth Insertion (TEI) maneuver. Probably the parameter of most interest will be the increase in delta V cost in the midcourse correction supervers resulting from a dispersed TEI.
- d. MFB and/or GPB Evaluate the effect of degraded MFFN performance we are now experiencing on ground monitoring of the descent and ascent powered flight phases of the lunar lending mission for purposes of advising the crew of guidence system performance and need for switchover.
- h. Perhaps you can think of some other things effected by this situation and could suggest additional studies. Also, I may have indicated the wrong branch and assume you will correct that. As far as completion dates are concerned, I don't think this is real urgent. However, perhaps some preliminary results could be made available sufficient to know if we really have a problem or not. I'm not so sure we do but there seems to be panic growing in some quarters ---- Frankly, MSFN performance is turning out to be substantially better than I ever expected a couple of years ago when I was bad mouthing its use.

verd W. Tindail, J

(See attroped list)

UNITED STATES GOVERNMENT

Memorandum

NASA - Manned Spacecraft Center Mission Planning & Analysia Pages

: FB/Chief, Flight Support Division

DATE: OCT 26 1967 67-FM-T-97

t . The Deputy Chief

subject: Core rope simulator certification

As you know, Jack Williams is attempting to trace down and verify the validity of the logic which led to the decision to exclusively utiline core rope simulators for all spacecraft computer program verification. Since I anticipate we may never really reach a satisfactory conclusion to this investigation, it might be appropriate to have a document on the order of that attached signed by the appropriate representatives of the GAC Division and MIT, who should be responsible for certifying that the PAC is really okay. Perhaps representatives of other organizations such as Raytheon and AC Electronics should also be included.

Enclosure

MA/C. C. Kraft, Jr. 1767/8. P. Mann 785/J. E. Williams

PM:HWTindall, Jr.:pj

This would be good for 501

This would be good for 501

John Hung
you'd talks

MEMORANDUM OF UNDERSTANDING

The undersigned representatives of the Guidance and Control Division of MSC and the Massachusetts Institute of Technology concur in certifying that sole use of a Program Analyser Console (PAC), otherwise known as a core rope simulator, and Apollo spacecraft computer programs assembled on tape for input to these devices is adequate and sufficient for flight verification and validation of spacecraft computer programs in lieu of any use at all of the actual core rope memory modules to be used in flight.

This memorandum is for purposes of the Flight Readiness Review.

Ralph R. Ragan Instrumentation Laboratory Massachusetts Institute of Technology

Robert A. Gardiner Chief, Guidance and Control Division MSC, MASA

300

Date

CONTROL STATES CONTROL

UNITED STATES CONTROL

UNITED STATES GOVERNMENT

Memorandum

NASA "anned Spacecraft Center Mission Planning & Analysis Division

TO

PD12/Spacecraft 101 ABPO Mission Engineer

DATE: OCT 24 1967

PROM :

FM/Deputy Chief

SUBJECT;

Immediate restart of the SFS engine under PONCS control

1. This memo is in response to your question as to whether there was anything in the spacecraft computer that would prevent attempting to restart the SPS engine immediately if it shut down prematurely for some reason. I passed this question on to the Guidance and Performance Branch (MPAD). The following paragraphs are quoted almost verbatim from Rick Nobles' response.

2. During an SPS burn, if the delta V monitor program of the CMC detects that the accumulated velocity falls below 0.64 meters per second for at least two computer cycles (i.e., 2 to 4 seconds), it does the following:

- a) terminates the Engine On command
- b) maintains V computations
- c) displays 59-59 on the DSKY (R1)
- d) turns off the TVC DAP
- e) turns on the RCS DAP
- f) recycles to time-of-ignition minus 5 seconds (TFI=5) in the thrust program, and starts counting down
- g) asks for Engine On enable which is given with an "enter"
- h) commands the SPS on at TFIwO (and no sooner!)
- i) switches from RCS DAP to TVC DAP

At this point the delta V monitor checks acceleration equin and if the thrust is on it will go right on through the program; if the thrust is still too low to pass the 0.66 meters per second test it recycles again as previously described.

3. The program actually cycles back to TFI=5 in exactly the mami program used for a nominal SFE burn. Accordingly, manual ulluge must be provided if it is needed and the engine cannot be started earlier than stated above. This all means that the engine will be off for a minimum of 7 to 9 seconds in this guidance control mode.

Howard W. Timbell, Jr.

ce:

CF/P. Kramer

CF22/C. C. Thomas

PA/G. M. Low

K. S. Kleinknecht

PD4/A. Cohen

PM/O. E. Maynard

FA/C. C. Kraft, Jr.

S. A. Sjoberg

C. C. Critzon

R. G. Roce

FC/J. D. Hodge

E. G. Kranz

D. H. Owens

D. B. Pendley

FC2/J. W. Roach

FC3/A. D. Aldrich

FC5/C. B. Parker

J. S. Llewellyn

G. S. Lunney

C. E. Charlesworth

P. C. Shaffer

J. C. Bostick

H. D. Reed

FL/J. B. Hammek

FS/L. C. Dunsoith

FS5/J. C. Stokes

T. F. Gibson, Jr.

L. A. Fry

FM/J. P. Mayer

C. R. Dien

M. V. Jenkins

FM13/J. P. Bryant

J. R. Gurley

E. D. Murrah

FM: HWTindali, Jr.: pj

FM4/R. P. Parten FM4/B. D. Weber

PMS/R. E. Ernull

PM7/S. P. Mann

R. O. Nobles

PW Branch Chiefe

SAN THE BOOK HE TO

UNITED STATES GOVERNMENT

Memorandum

MASA - Manned Spacecraft Center Mission Planning & Analysis Civilian

70 : FA/Director of Flight Operations

DATE: OCT 20 1967 67-74-7-95

FROM : TW/Deputy Chief

susject: More about LM radar rendezvous data processing

- 1. This note is in answer to some questions you scribbled on the bottom of my IM radar observations memo (67-7M-T-81). You asked if there is any smoothing process on the IM radar data prior to its imput to the space-craft computer. My understanding is that there is not. That is, when the computer wants it, it reads the range/range rate register and the angle CDU's. In principle, this is the same as it was for Gemini, wasn't it? Of course, there is a check to confirm that there is tracker lock-on, the so-called "data good" signal from radar to computer.
- 2. Internal editing is considerably more complicated. First of all, a (side lobe) check is made to see that the radar angles measured are within 3° of those expected by the computer based on the current state vector. If either of the angles fall outside this 3° check, all of the data is rejected, however, the crew is informed of the situation and is given the opportunity to override and force acceptance of the data. Rejection or acceptance of the data involves all four pieces of information---range, range rate, and the two angles---simultaneously, that is, you cannot selectively use components of the total observation individually.
- 3. The next data check within the computer is based on the change in the state vectors resulting from the processing of these observations. This processing is done on each individual component of the observation-range, range rate and each of the two angles---and in each case a test is made to see if the change in either position or velocity is greater than some present limit. If it exceeds this limit, the computer stops and presents the crew the option of overriding the computer and forcing acceptance of the new solution. He must make this decision based on rather limited information and, of course, will have nowhere near the skill of our highly specialised RTCC Data Select people with their magnificent computation and display capability. As the amount of radar data processed grows with time, the weight given new data is decreased substantially and I would be surprised if much data is rejected by this editing unless the radar goes ape.
- 4. An in so many other areas, it is surprising to discover how limited the analysis and justification is for the specific program formulation we have. However, when you consider the large number of different navigation processes in work I suppose we should not be surprised. An avful lot of the

effort lately has been spent on estimating quality and determining how to use sextant and reticle data for rendezvous navigation, how to use VIF data, how to use telescope data for earth landmark tracking-both around the earth and moon-and, of course, there is continuing MSFN orbit determination business. Each of these is a major effort and we have very few people capable of doing this work.

5. Of course, something else that increases the complexity of the LM rendezvous radar processing tremendously—and, unfortunately, in a very unresolved way right now—is the business of the rendezvous radar angle biases which apparently are an extremely complicated function of the orientation of the radar antenna off boresight. Attempts have been made to model the biases in the spacecraft computer program and estimate them in real time, along with determining state vectors. These models are almost cortainly in error and actual radar performance data is very limited and of poor quality. My inclination over the past year and a half has been to eliminate this part of the processing which forces us to do a 9X9 solution as opposed to a 6X6. I'm afraid it may screw up the whole business. Unfortunately, I have not been able to prove this is a sufe thing to do so far, especially from a standpoint of delta Y costs.

Howard W. Tindall, Jr.

Enclosure

cc: (See attached list)

Memorandum

TO

.Con list below

Participated Speccount Conter Library & Analysis Division

DATE: ((())

PROM

FM/Deputy Chief

SUBJECT:

About frequency of IM radar observations

- 1. I learned something the other day about how the LM computer uses rendezvous redar data that is different than I thought. It had been my understanding, and I think most other people's too, that rendezvous radar observations were obtained and processed by the computer every 60 seconds. In fact, there has been some concern that perhaps that is not frequent enough. Well, it turns out that the time between observations is probably more like 14 minutes. What actually happens is the computer obtains an observation from the radar and processes it (i.e., redetermines the spacecraft state vector). This processing takes about 15 seconds. Once processing is completed, an internal timer is set in the computer to obtain the next observation one minute from that time. In some cases, it waits even longer if some other higher priority task is underway.
- 2. In addition to reducing the arount of radar data used during a mission, processing in this way prevents the crew from using the computer obtained radar observations in their backup computations as conveniently as they did on Gemini. On Gemini, you recall, observations were obtained and stored in computer memory exactly once per minute which allowed the crew to read them out at their convenience and be sure that they were obtained at precisely 60 second intervals a convenient delta t to use in their backup computation.
- 3. This memo is just to pass on this discovery to you. It is not our current intention to change this program, although I suppose it would have been nice if we could.

Howard W. Tindell, Jr.

Addressees: (See attached list)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS 77058

n nemy neven to 67-PA-2-94A

- OCT 19 1967

8 North American Rockwell Organisation Space Division 12214 Lakewood Boulsvard Downey, California 90241 Attention: M. M. Yucalid

FROM : Chief, Apollo Data Priority Coordination

SUBJECT: Descent phase to be edded to your Apollo Mission Techniques

TRW recently completed the attached chapter to be added into the appropriate vacancy in the Apollo Mission Techniques document I sent you recently. As was the case for the other mission phases, this section on Descent was done essentially without participation by other than TRW personnel. Accordingly, I expect it will be modified substantially before it becomes a working, configuration controlled document.

I am sending it to you because I thought you might find it interest-

Howard W. Tindell, Jr.

Enclosure

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS 77056

HEREY HERER TO 67-PA-91-93A

D : Joe Marino OCT 19 1967

Grunnen Airgraft Engineering Corporation

Department 472, Plant 25

Bethpage, Long Jaland, New York 11714

FRUM

Chief, Apollo Data Priority Coordination SUBJECT:

Descent phase to be added to your Apollo Mission Techniques

TRW recently completed the attached chapter to be added into the appropriate vacancy in the Apollo Mesion Techniques document I sent you recently. As was the case for the other mission phases, this section on Descent was done essentially without participation by other than Thw personnel. Accordingly, I expect it will be modified substantially before it becomes a working, configuration controlled document.

I am sending it to you because I thought you might find it interest-

Malosure

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANHED SPACECRAFT CENTER HOUSTON, TEXAS 77058

IN HERLY NEVER TO 67-PA-TL-924

OCT 19 1967

: Massachusetts Institute of Technology Instrumentation Laboratory

75 Cambridge Parkway

Cambridge, Massachusette. Oglad

Attention: R. Ragan

FROM

Chief, Apollo Data Priority Coordination

Descent phase to be maded to your Apollo Mission Techniques

Document

TRW recently completed the attached chapter to be added into the appropriate vacancy in the Apollo Mission Techniques document I sent you recently. As was the case for the other mission phases, this section on Descent was done essentially without participation by other than TRW personnel. Accordingly, I expect it will be modified substantially before it become a working, configuretion controlled document.

I am sending it to you because I thought you might find it interesting in the meentime.

Enclosure

Memorandum

TO & Systems Engineering Division Attention: PD3/R. V. Enttey

DATE: (101) (1967 67-74-2-904

PA/Chief, Apollo Data Priority Coordination

SUBTROY:

Descent phase to be added so your Apails Musica Toubniques document

1. The recently completed the attached chapter to be added into the appropriate vacancy in the Apollo Mission Techniques document I sent you recently. As was the case for the other mission phases, this section on Descent was done essentially without participation by other than The personnel. Accordingly, I expect it will be modified substantially before it becomes a working, configuration controlled document.

2. I am sending it to you because I thought you might find it interesting in the meantime.

Monard W. Mindell, Jr.

Inclosure

PA:HVTindall, Jx.:pj

Memorandum

Mission Planned Specials I register.
Mission Planning & Analysis Officials

FA/Director of Flight Operations

DATE: OCT 19 1967 67-74-2-8)

mone 1 Jay Deputy Chief

Majmort K-start tape briefing

1. George Low had his monthly briefing by GAC yesterday, October 16, a part of which I attended. One subject reviewed for him was the development of K-start tapes for the spacecraft computers. They capecially addressed the definition, scheduling, checking and actual manufacture of the K-start tapes required for guidance system testing at AC (for acceptance), North American and Grunnan. Emphasis was on these K-start tapes since it is these the Suidance & Control Division is responsible for.

2. I should think he, and you too for that matter, might be interested in the same subject for the K-start tapes used to initialize computer memory for the mission itself. Here the prime responsibility to within FOD. In addition to the considerations noted above, such a brackle should include procedures for making changes within the last few days prior to launch.

Howard W. Mindall, Jr.

PM/J. P. Mayer FM7/8. P. Mann FS/L. C. Danseith

M: HVTindall, Jr. (p.)

Memorandum

t Sen list below

DATE: OCT 19 1967 67-PA-T-88A

PA/Chief, Apollo Data Priority Coordination

SUBJECT: First meeting of the Descent Phase Mission Techniques Working Group

1. This memo is to request your participation in the detailed development of the Apollo Mission Techniques for the Descent phase of the lumar landing mission. We are setting up a small working group of the following composition to do this job:

MPAD	Floyd Bennett, Chairman
Flight Crew	Pete Conrad
FCSD	Paul Kramer
FCD	Phil Shaffer
FSD	Tom Gibson
G&C	Myron Rayton, 20 Smith
TRW	Bob Kidd
ASPO	Bill Tindall

The first meeting will be held on October 31, 1967, in my office (Building 30, Room 3068) at 9:00 a.m. The purpose of this meeting will be to review and propose modifications as necessary to the attached document prepared by TRW. It is anticipated that after several such meetings the overall operational logic will have been established and documented in sufficient detail and accuracy to permit wider distribution and somment. Right now, though, it seems desirable to keep the size of this working group as small as possible. However, if you want to bring additional people from your organization, feel free to do so.

Howard W. Tindall, Jr.

Enclosure

Addressees: CB/P. Conrad CF24/P. Kramer KG/M. Kayton E. Smith FC/P. Shaffer C. Parker FM6/F. Bennett FM7/M. Cassetti FS5/T. Glbson PA/G. M. Lov (Info) TRW/B. Kidd

PA:HWTindall, Jr.:p. Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

gerigens fille ing, op mar 1000 (gellige) Que lives del grip 180-11.4

UNITED STATES GOVERNMENT

Memorandum

TO 1 See List below

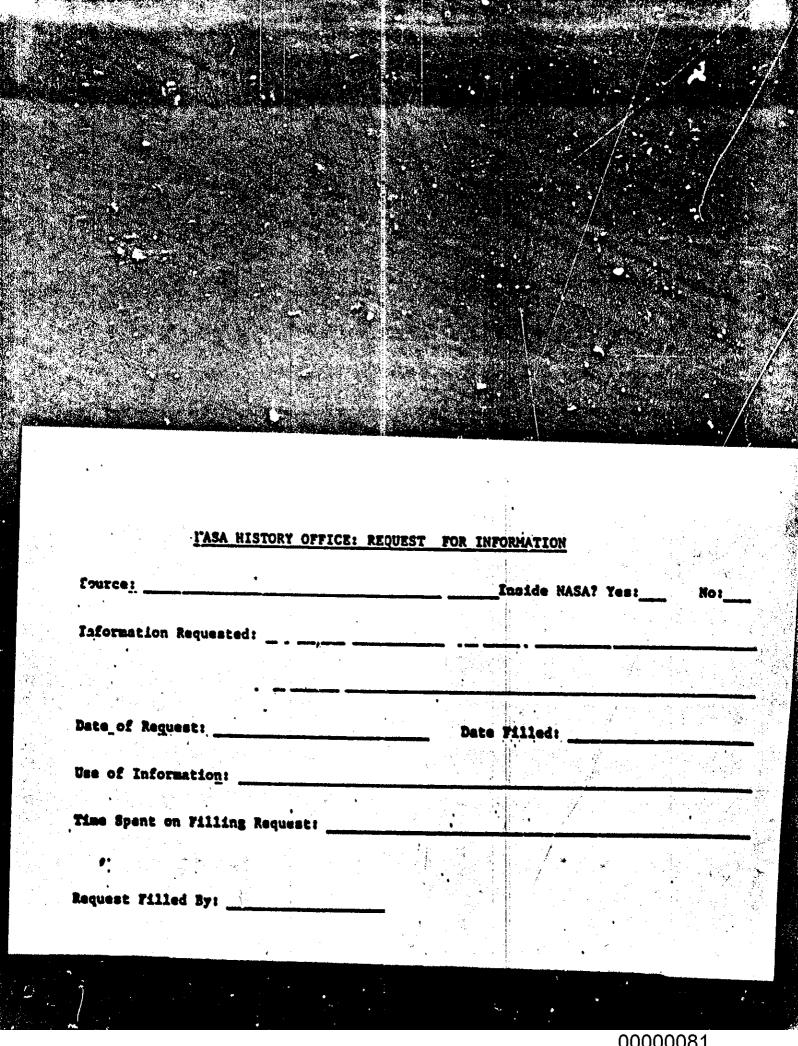
DATE: ()CT 10 1967 67-PA-T-87A

FROM : PA/Chief, Apollo Data Priority Coordination

Majacr: First meeting of the Ascent Phase Mission Techniques Working Group

1. This memo is in confirmation of our telephone conversation requesting your participation in a continuing working group to discuss the Ascent phase of the lunar landing mission. The overall composition of this Ascent Phase Mission Techniques Working Group is as follows:

FCD Charlie Parker, Chairman
Flight Crew Pete Conrad
FCSD Paul Kramer
MPAD Marlove Cassetti
TRW Dick Boudreau
ASPO Bill Tindell


- 2. The first meeting is scheduled for Friday, October 27, 1967, in my office (Building 30, Room 3068) at 9:00 a.m. It's purpose is to go through the operational flow diagrams and associated analyses covered in the Ascent section of the TRW Apollo Mission Techniques document I sent you in September, and start the cyclic modification process needed to get it "right."
- 3. It is desirable, I think, to keep this working group as small as possible, however, if you feel it desirable to bring additional people from your organization, be my guest. Ultimately, once this document has been thoroughly reworked and substantial agreement has been obtained among the working group members on its content, it will be republished for final review with much wider participation.

Howard W. Tindall, Jr.

Addresses: CB/P. Conrad CF24/P. Kramer PC/C. Parker FM7/M. Cassetti PA/G. Low (Info) TRW/D. Boudreau

PA: HWTindall, Jr.:pj

Memorandum

TO (1 Dee list below

DATE: OCT 18 1967 67-M-T-86

brownaft Cent

inclysis Division

PROM : 1 7M/Deputy Chief

SUBJECT;

Some things about the Descent Propulsion System as controlled by the

- 1. I guess I would have realized this if I had thought about it, but it was a surprise to me (and others) to learn that the Descent Propulsion System (DPS) engine in the IM is not aligned through the cg prior to ignition. I suppose I had assumed that it would be handled the same way as the SPS engine on the command module, but it is not for several reasons.
- 2. For one thing, it is possible for the cg to move substantially between one maneuver and the next since propellant transfer from one tank to another is not inhibited or controlled. Therefore, og location is really not known prior to ignition. In addition, actual engine alignment is not known prior to ignition since there is no measurement and feedback of gimbal position. As I understand it, the way the PS is aligned prior to the maneuver is as follows. The engine is haved to its maximum possible deflection with the drive motors running against the stops until it has surely gotten there. It is then driven back the length of time necessary to align it with the spacecraft X-axis based on an assumed engine drive rate. Of course, it is almost certain that thrust vector alignment obtained in this manner will not pass through the cg and will result in attitude disturbance torques. However, since the DPS is started at only 10% thrust, it is well within the capability of the RCS jets to hold attitude until the DPS has been realigned by the DAP through the cg.
- 3. Another thing I have learned about the DPS is the maneuvers which are shorter than 10 seconds never have closed loop steering other than attitude hold control. (This is equivalent to the 7 or 8 second PS burn duration without steering.) Of course, there is no minimum impulse DPS programmed in the LGC out there is nothing in the spacecrate computer program to prevent calling for an extremely short burn. However, the shortest that could be achieved is in the order of 2 second duration at 10% thrust. This duration would occur even if a shorter burn, say a second duration, were requested.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Buy U.S. Savings Bonds Regularly on the Payfoll Savings of the

of the state of the second section of the or and will be dead & grinder of the color of

morandum

Test list colour

DATE: OCT 18 9 51-14-1-85.

TO ME TO THE STATE OF THE STATE

IN The Puty Chief

suspect: Spececraft computer progress development was be utilized by MITA

- 1. That for the record, I would like to record a list of program development improvement ideas which MIT plans to matagarate list was gleaned from discussions by Ed Copps, Fred hereits and Alex Kosmala during the week of October 2, 196%
- a) helich more complete program structure and the continue of prior to program integration. This include the second of the second of the program module interresses. And I see a see a like alter. of "puter memory.
- Control, of program consearts will be defined to the constant and decreased to avoid duplication from one people of the second
- The order to avoid the profiled on water in the continue ্ত প্ৰা**টেন্ট্ৰিটাৰটিটা**ইস্টেট্ৰেটাৰ সভা একজন্ত **ক্ষা**ৰ মুখ্য **না**টিন্ট্ৰিটাৰ প্ৰশাসন

The proposes to state a series of remains of the bold works g. zeviewa. 🖰

- e) Approved progress of the second test by the constitution of the arrive from MSC but will a seden and the flight and antemplate in blocks periodically as apposed to randomly as in the medical of
- Much tighter assembly introl will be excelled not all progre mediciontions being monimum and reviewed by a higher level or are management. Only these ages really nocessary will be occur, to a new much assect a will only promote once a week as appeared to the much higher the relationship
- of outrol, special proceduces will be g) Associates with "sealed" internally in the a they be no operational as opposed to the current practice of putting the entire program under configuration control warmall components are working.

and a colorinal of Payorli Book of Plan

- (DAP) are available for both the LM and command module. On the other hand, design improvements will probably be necessary on a fairly continuous basis. All modifications in the DAP's will be made and checked out in some program other than the current flight program assembly used by the rest of the program development personnel. Modified DAP's will only be added to this working assembly when they are running properly.
- i) Mich more coordination and communication between the various groups involved in software development is essential. It is Martin's intention to establish standing committees with periodic meetings for this purpose. These meetings will also be used for consideration and coordination of proposed changes.
- j) Apparently, in the past development of program test plans has been carried out by a small group without much assistance, advice or coordination with other interested parties. Wider participation in this effort both at MIT and MSC is planned.
- k) MIT has finally decided to utilize discrepancy reporting like we have requested for well over a year and which has recently proven to be of great value to them in the latter stages of the SUNDISK development. They intend to utilize this from the beginning on the remaining programs.
- an up-to-date operational constraint list. Obviously, one way in which discrepancies may be eliminated is by establishing work around procedures or operational constraints on program usage.
- m) Steps are being taken to make sure that as problems are found and corrected in one major program these same flavs are corrected in the other programs (e.g., SUNDANCE and COLOSSUS).
- n) Slow response in the exchange of data, particularly spacecraft characteristics, has delayed MIT previously. Steps are being taken at both MIT and MSC to provide faster response. When necessary, in lieu of answers from MSC, MIT proposes to state their assumptions and proceed shead with program development to avoid delays of this type.
- 2. As you can see, nothing particularly startling here but I believe everyone would agree those are all good things to do, that is, they should improve the quality of the program itself and should certainly result in setting the Job dune facter. MIT has recently storganized their personnel somewhat, hopefully in a way that will allow them to implement these ideas effectively.

Addressees (See attached list)

Viemorandum, for file

CCT 14 line

IN DEPLY CHIEF

There is II to be no improve training of second days impossiblely the apersons of TO INCOME THE LANGE

> Le During the took of October P. A. could be Mac and MIT people comprogram actifications and necessary open them. With how the to namely that the capability of samel input of miles and or range. In to intermed the provided to although the comment motule or Lie conjurer programs of course, Lie sadar data in automaticully collected and processed is the LOC and date from the saw YIP ranging device being added in the CHM will be subtem ticully obtained and processed by the DM. This decirion Cartainly seemed logical to me based on the following retionale.

The communicatelle only computes readervous manauvers plant my with The and has both a sextant and VID ranging who independent sensing devices to utilise in these computations. It was not fold that backing this up by use of same! Input of range and range rate information obtained by voice from the lift would be particularly valuable especially since the LM can utilities that data in its own computer and transmit. 11 of the maneuvers Including CRI and CDH that the rousend module mist execute.

In the LM bhis mode was felt to be unmedeaury since that wohice in equippe t with a complete backup system, the AGE, into which harms range data can be input. But probably the shrongest argument against the need of manual input of range and range rate in the LM computer in that if the primary guidance system is working reasonably well-the state vectors at LN insertion should be good enough even without rader deta to permit targeting both the OSE and CDR maneuvers. Oi course, conditions following CLM would not be ideal. That is, more than likely the orbits would not be presidely coelliptic and the The would probably have enifted beyond the usual tolerances. However, a precise TPI maneuver based on updated rendemyous navigation will be available from both the AGS and from the command modul based on nextant and VID rangings. In addition to these there are the backup sechnarium which usi line who tower mental observational data in overtable. And, of ocurse, 1838 will provide assistance.

Buy U.S. Savings Bonds Regularly in the Payroll Savings Plan

A. Elimination of these remiserous navigation moder substantially simplifies the spacecraft computer programs -- as well as erew procedures and training, I suspect -- and does not appear to significantly reduce overall onboard capability.

Boward W. Tindall, Jr.

Addressees: (See attached list)

See list below

DATE: GUI 17

Marie Carlo Car

NASA. " more comercial Contra

67-FN-T-83

FROM

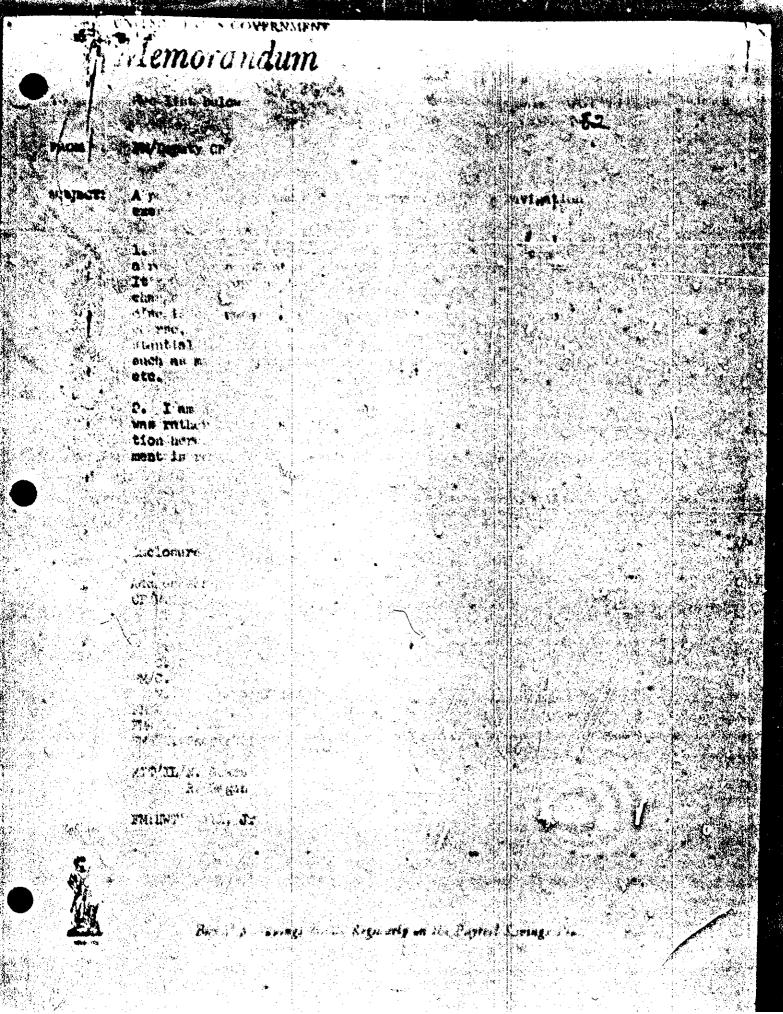
FM/Deputy Chief

SUBJECT:

Spacecraft computer program status

1. Aftere's another of my irregular updates on what's going on in the business of spacecraft computer program development?

- 2. SUNDISK, the earth orbital command module program, is essentially complete and, for all practicel purposes, could be sent to Raytheon for rope manufacture whenever anyone wants to give the word. From all I have been able to determine, the quality of this program is very good and, perhaps, to balance some of the criticism of MIT, they should be commended for this. It provides the capability of doing all the things we specified over a year ago with numerous improvements added in along the way. (I am certain, however, changes will be made in it before flight for the same sort of reasons we have remade SUNHURST ropes twice.)
- 3. It is now evident that the lunar landing programs COLOSSUS and LUMINARY will not be completed for quite a long time---certainly not for LM-3 and command module 103 as we had planned. This has forced us into the position of having to use SUNDISK on Command Module 103 and has made it necessary to develop an interim earth orbital program (SUN-DANCE) for use on LM-3 and LM-4.
- 4. At this time we are in the process of determining an accurate program development schedule for these three programs at MIT as well as trying to identify the major problem areas in order to attack them on at least two fronts, namely, implement improvements in the way the work is done and change the MIT organization to be compatible with them. I don't want to minimize the seriousness of this situation. We are in deep, serious yogurt!
- 5. One accomplishment of significance I would like to report is that we have recognized one way of substantially improving program delivery by making sure MIT has a precise, approved specification of the spacecraft computer programs required by MSC right now. Our recent SUNDANCE and COLOSSUS OSOP review and associated technical direction to MIT accomplished this to


a large degree. However, there was one large area lacking definition and MSC approval, namely the change in the structure of the rendezvous programs which Flight Crew felt to be mandatory to substantially improve their operational procedure. In order to complete this program definition phase as quickly as possible, a team of MSC and MIT people spent the week of October 2 at MIT formulating and documenting all unresolved items in GSOP Chapter & format. I think this was accomplished very well in terms of both quality and speed resulting in a rough draft of the GSOP with MSC approval upon which MIT may prepare the final GSOP and ectually begin program design and coding immediately.

6. Thus, all three programs, SUMPANCE, LUMINARY, and COLOSSUS are now, in effect, covered by approved GSOP's and are under configuration control. That is, any changes must be handled through the standard change control procedures.

7. Unfortunately, it is highly probable that a similar exercise will eventually be necessary involving the Descent and possibly the Ascent portions of LUMINARY program once experience is obtained in their operation on the simulators at MIT and MSC. Mandatory changes to simplify crew procedures are likely to arise and the importance of crew evaluation of these processors at the earliest time can not be over emphasized. What ever can be done by the Flight Crew Operations Directorate to provide a meaningful evaluation facility and to utilize it for this purpose should be done for everybody's benefit.

Howard W. Tindell, Jr.

Addressues: (see attached list)

without the drawing as a second set of the

OC1 6 1967

Miliniate fortimes and lander Added

inter 783

Proposed change to ACE/Fol II Operational Procedure (Change to & CER-30)

informations (1) Henorander (2227-78-31) from CF22/Suler, Spr. of Carteria Branch, "ACE/Vol II Propered Statement Ophintional Floor State Change number CS4-30," Sept. 27. 1967 and (2) NEC II 66-MS-AC, "Mady of Luner Orbit Savigation and Londing Assumant," Software 16, "Mady

italiarence 1) proposes that the ET shall and be all prof 10° is it of local vortical rather than the ET post tien current, used in A it.
This division does not concur with the proposed charge and all approximate the current S/C 101 landauck tensains procedure for the bill stay reasons:

Institute apparent rate of motion across the option field a viscosis lumbers 400 about fold that the language on track of a local vertical test working to a landwark should be sequired as only as possible to the positioning the short axis to 100 about of local vertical vil the sequired as of local vertical vil the second course to acquire and track landwarks at a time when the apparent to of motion is businesses at a model water.

b. The current S/C 101 procedure of tracking lendmarks is a list axis local vertical mode is not the technique this division reasonable for lumar landmark tracking (ref 2). First, the option field of the last parallely cocladed by the LM which decreases evaluable tracking to the last in appendix to lades in the the end it utations that must be not up about an axis having a high masked of ine the Furthermann, because of the low pitch axis so trol power, the recovery a country a landmark that has passed through the uption field of view is a secure community process in addition to being costly in Alish Lamps.

decime of the above remous, tale divides recome des

to the impromental in S/C 101.

the sitch local vertical lands of testings for S/C.

Charles to the roll-year local vertical operational procedure has about the markets are consistent are consistent and the consistent to refer the same in the consistent are consistent and the consistent to refer the same in the consistent are consistent as a consistent are consistent as

the state of the state of the second the eres is not up initial reason about the full to you have state when you was at aid, it bes fire as at. the alightime and marking processors is identical to the processor the plant in the processor with the processor in the state alignment for its continual sources. 1 4864 abouted by much that at the madimins of the pass to epaceors. is normal to the orbital plane with the of sale planted down dit. respect to the local horizontal and the exce to the urbit Oak rolled downward 20° with respect to the local hordropted pla in Da simulal be alligned out-of-plane to mist also the per. thinkly o look. With this alignment, the option line-of-sight will be vertical by 200 throughout the pass (with correct initial re 44.121 tracking 400 about of and 200 behind I wellow, this w for manly unquinition and also allow nighting and narking wi apparent rate of motion of the landaux through the optio field. is at a relatively low value.

Original algood by Modern As Continues

OUS

MOR/D. C. Cheethan

MORO/P. S. Abereale

MALL/C. J. Leffane

CF22/A. A. Moses

PM/H. W. Tindall

PM/O. S. Mayness

YA/R. G. Rose

No moral local larges de.

NUTTICE CONTRACT CARLES

Single Andrews

emorandum

Print of word Conversely Contor Listed states & daulysis Division

See list below

DATE: ()() 67-**FM-T-**81

FM/Deputy Chief .

About frequency of LM radar observations

1. I learned something the other day about how the IM computer unes rendezvous radar data that is different than I thought. It had been my understanding, and I think most other people's too, that rendezvous radar observations were obtained and processed by the computer every 60 seconds. In fact, there has been some concern that perhaps that is not frequent enough. Well, it turns out that the time between observations is probably more like 12 minutes. What actually happens is the computer obtains an observation from the radar and processes it (i.e., redetermines the spacecraft state vector). This processing takes about 15 seconds. Once processing is completed, an internal timer is set in the computer to obtain the next observation one minute from that time. In some cases, it waits even longer if some other higher priority task is underway.

- 2. In addition to reducing the amount of radar data used during a mission, processing in this way prevents the crew from using the computer obtained radar observations in their backup computations as conveniently as they did on Gemini. On Gemini, you recall, observations were obtained and stored in computer memory exactly once per minute which allowed the crew to read them out at their convenience and be sure that they were obtained at precisely 60 second intervals - a convenient delta t to use in their backup computation.
- This memo is just to pass on this discovery to you. It is not our current intention to change this program, although I suppose it would have been nice if we could.

ward W. Tindall, Jr.

Addresants: (See attached list)

120 do sources the prior of class a raidely that instant who is reasonable test to Sanda long to me.

Buy U.S. Savings Bonds Regularly on the Payrol! Soning Plan

Memorandum

NYCA-Manned Spacecraft Center Mission Francing & Analysis Division

ro : See list below

DATE: OCT 11 1967.

PROM :

FM/Deputy Chief

SUBIRCT:

It's SUNDISK for Spacecraft 103

1. This memo is to make absolutely sure you are aware of the horrible decision we had to make, namely that we must use the SUMDISK spacecraft computer program for Command Module 103 as well as 101. Of course, I am bringing this to your special attention since it has obvious influence on how the Apollo Operations Handbook is developed by MAA.

2. It is our earnest desire that COLOSSUS be ready for the Spacecraft 104 flight and MIT has been so directed, but I should point out at this time we have no firm program development plan from MIT yet showing how they will accomplish this consistent with current spacecraft delivery and flight dates.

3. I can't tell you how sorry I

Howard W. Tindall, Jr.

Addressees: CF/J. Bilodeau M. E. Dement PM5/C. R. Haines

PM5/C. R. Haines J. P. Loftus

FM: HWTindall, Jr.:pj

Memorandum

TO : See list below

DATE: SEP 11 1967 67-PA-T-79A

FROM : PA/Chief, Apollo Data Priority Coordination

SUBJECT: Data Priority Coordination - a plea for help

1. Over the past year considerable thought has been given to how to coordinate mission planning and procedures development involving use of the various guidance and control systems for the lunar landing mission. Initially, a four man panel (Cohen, Jenkins, Smith and Kramer) worked for a month or so and assembled a pretty good preliminary set of logic flow charts describing spacecraft and ground activity starting in the nominal mission with the LM on the lunar surface and ending with rendezvous. This work, you recall, ended with a recommendation to implement the orbit rate ball in the spacecraft and the panel was disbanded. Subsequently, a task was assigned TRW-Houston to carry on this work for the entire lunar landing mission, first under the direction of Dr. Shea and then Dick Carley. In my new assignment as Chief, Apollo Data Priority Coordination, I have inherited this imposing task. This memorandum is to request your assistance in two respects. The first is to solicit your opinion on a proposed approach to the overall coordination problem. The second is to request your review of the format and technical content of the attached Apollo Mission Techniques Document prepared by TRW, which, if proper, I would expect will become a prime component of whatever we do.

2. It has been proposed that the techniques to be used on Apollo missions should be thoroughly documented and maintained under configuration control. Among other things the intent is to make sure everyone working on Apollo who has interest in this business would know exactly what the officially approved scheme is for all phases of the mission under both nominal and degraded conditions in order that they can insure compatibility of the work they are doing. Of course, a process would have to be established for modifying these schemes as discrepancies or undesirable characteristics are uncovered. That is, some sort of change control is needed here as it is in so many other areas. Considerable work has progressed under Dick Carley's guidance to get this method of operation underway. For example, he fostered the attached TRW working paper which covers two of the major mission phases—Ascent and Rendezvous. It is their attempt at developing logic flow diagrams.

BILL T. a good means,

ple let me know it you

Need my belp GML 9-27

Buy U.S. Sovings Bonds Regularly on the Payroll Sovings Plan

describing the normal G&C functions, identifying decision points in the mission, and establishing the procedures for monitoring the G&C systems required to assess systems performance and govern subsequent action. As far as I can determine, this document reflects the work of a few TRW people with some limited input informally obtained from individuals within MSC.

- 3. It is evident that in order to have a truly useful working document, close coordination and cooperation of all MSC elements and our contract—ors is required. What I would like to do, after allowing sufficient time for those of you interested in this work to review the attached material, is to have a meeting to discuss the manner in which we will carry out the coordination of this activity. Assuming documentation of the type attached is a necessary part of this activity, as I believe it probably is, we will also review the format and technical content of at least one of the mission phases documented here. Our primary purpose would be to make sure it does the job it needs to do in the beat way. Right now I think it would be reasonable to aim for a meeting on the Ascent phase in late September for that dual purpose.
- 4. Based on the results of that meeting, I would propose to initiate a series of meetings early in the development of the documentation such as this for the rest of the mission phases during which the opinions and inputs of everyone concerned may be discussed and included from the beginning instead of after the work is carried as far as in the attached. The other mission phases are currently broken out as follows: (A) Earth Launch beginning early in the countdown and ending after TLI, (b) Trajectory Maneuvers including MCC, IOI, TEI, (c) Lunar Descent, and (d) Remerty. As you can see this all applies directly to the lunar landing mission, but obviously it will also have considerable bearing on how we fly the earlier development flights.

I'll be in touch with you again.

Howard W. Tindall, Jr.

Enclosure

Addressees: (See attached list)

Memorandum

FM6/Chief, Rendesvous Analysis Branch

MASA-Manned Spacecraft Center Mission Fianning & Analysis Division

> DATE: SEP 11 1967 67-FM-T-78

FROM : FM/Deputy Chief

suspect: Mission rule for TPI - ground or onboard

This is just a reminder of an action item you picked up at our August 31 panel meeting. As you recall, it is necessary that we establish the magnitude of the difference between the ground computed and onboard computed TPI maneuver which is used by the crew to decide which solution should be used. I suppose it will be based on the same sort of thing we used for Gemini. Please let me know what work is required to figure this out and how long you expect to take doing it. Also, could MAC be of assistance, I wonder?

Boward W. Tindall, J'.

cc: CF/P. Kramer FA/C. C. Kraft, Jr. FC5/C. Parker FM/J. P. Mayer C. R. Huss M. V. Jenkii † FM13/J. P. Bryant FM14/R. P. Parter FM/Branch Chiefs

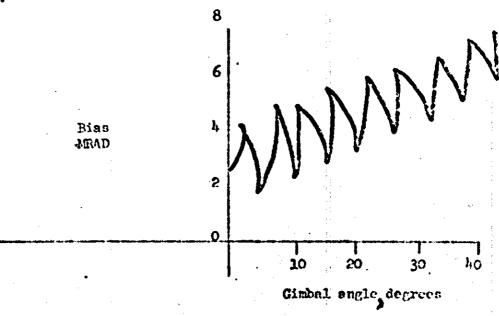
FM:HWTindall, Jr.:pj

say to Saving, Bonds Regularly on the Payroll Sovings Plan

Memorandum

: FM4/Chief, Mathematical Physics Branch

Mission Planning & Analysis because


DATE: SEP 7 1967 67-FN-T-77

FROM : FM/Deputy Chief

SUBJECT: How do we get and use LM replezvous radar observations?

I. There is a lot of concern at the present time regarding the minner in which the IM rendezvous radar data is to be processed onboard the spacecraft. I feel that you should devote as much attention to this as you possibly can since it influences both the formulation of the spacecraft computer program and, to a large extent, erew procedures. Of course, there are the usual problems associated with any system which must edit and weigh data automatically. All sorts of situations may be imagined in which such a system would fail, of course, and so our first impulse is to somehow get the men into the loop. When you consider how this is done in the RTCC with a great battery of specialists and multiple displays specifically designed for this purpose and compare that with the spacecraft's relatively untrained pilot with almost nothing to look at to assist his decision, the situation appears quite critical.

2. On top of this, the consequences of failure are probably much more serious. Myron Kayton showed me some test data of radar biases versus radar gimbal angle deflection from boresight. It looked something like this:

Buy U.S. Savings Bonds Regal. By on the Payroll Seeings Plan

h. I suggest you get together with Kayton, if you have not already, and lay out a program of analyses to be carried out in parallel, complimentary to and independent of the MIT work. This work should be designed to ultimately select the best mathematical formulation of the onboard computer programs, the data rate, the computer program controls required by the crew, and the procedures they must follow with regard to spacecraft attitude control during procurement of observations, and manual data editing and display requirements, if any are required.

5. As usual, this must all be done as quickly as possible since program development and procedures are moving ahead. On the other hand, I am sure flight experience and analysis are going to force modifications in this program before we go to the moon and you should not sacrifice quality for speed.

Howard W. Tindall, Jr.

cc: (See attached list)

Memorandum

TO : See list below

DATE: SEP 7 1967

PRCM

PA/Chief, Apollo Onte Priority Coordination

*IMIECT

Another meeting about trajectory control on the first manned Apollo mission (S/C 1/1)

- L. As you may have heard, we had the first of the Trajectory Control, Data Priority Panel meetings last Thursday, August 31. My original intent was to go through the four major exercises on the Spacecreft 101 mission involving the Gu dance & Propulsion Bystems at that meeting but time did not poroit discussion of more than the SPS maneuvers and rendezvous. As a result, I have set up a followup meeting on Thursday, September 14, in Room 660, Building 2, at 9:00 a.m. to finish that. The two mission exercises I expect we will spend most time on are: (s) retrofire and reentry and (b) earth landmark tracking and navigation. In addition, if the guidance systems performance data is available as requested last time, we will also go over that to evaluate its impact on selection of guidance modes and monitoring procedures for the SPS amenders.
- 2. I hope your organization can participate in this discussion, which I look upon in being for information exchange more than for decision making. Hopefully, we will all get a thorough understanding of how these various things are to be done and how the systems are to be utilized.

Bold S. Sacago Sada Regal of on the Poppel Savings Play

Howard W. Tindall. Jr.

Addresses: (See attached list) BPTIONAL POINT NO. IN MAY 16D EDITION 6SA PPHR (41 CPR) 61-11.6

UNITED STATES GOVERNMENT

Memorandum

ro : See list belov

FROM : FM/Deputy Chief

subject: LM spacecraf hasiquments

Mask-Manned Spreeduli Cader
Mission Planning & Analysis Division

DATE: SEI 6 1967 67-FR-T-75

This is to make oure you all get the word in case if influences your work in some way. As I understand it, Mr. Jow has directed that LM-2 be configured for unmanned flight only. It was been established that the first manned LM will be the LM-3 spacecraft. If it's found unnecessary to fly a second unmanned velice, It will be reworked to be flown much later, perhaps on an AAP wissle. Ore thing we must determine is whether another set of BURST ropes should be manufactured for the LM-2 spacecraft at this time, and if any medicications should be made in them.

WAS TRUE TO BE THE TANK OF THE PARTY OF THE

Howard W. Tindall, Jr.

Addressucs:

FS/L. C. Dunseith

FS5/J. C. Stokes

T. F. Gibson, Jr.

R. O. Nobles

L. A. Fry

FM/J. P. Nayer

C. R. Huss

M. V. Jenkins

FM13/J. P. Bryant

J. R. Gurley

G. In Hunt

FML4/R. P. Parten

FM3/B. D. Weber

Fig/R. E. Frmull

FMI/S. P. Monn

FM/Branch Chiefs

FM: HWTindall, Jr.: pj

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

UNITED STATES GOVERNMENT A/SA- Manned Spacecraft Center Mission Planning & Analysis Division emorandum DATE: AUG 29 1967 See list below 67-734-7-74 M/Deputy Chief Maneuver sensitivity coefficients It's been almost a year since I went out a note on this subject. and since it keeps coming up I thought it might not hurt to remind you of the following sensitivity coefficients: Moon . Maneuvers .72 nm/fpi **Horisontal** Radial (Vertical) .14 nm/fps These numbers describe the change in altitude (in mautical miles) as a result of making a horizontal or radial manguver (in feet per second) The change in altitude, of course, occurs 180 of orbital travel after a horizontal maneuver, and 90 after a radial maneuver. Incidentally, it is no coincidence that the values for the radial maneuver are exactly those for the horizontal. This is a true, mathematically defined relationship. I point that out because it might be easier to just remember valuer for horisontal maneuvers and the factor of 4 to get the others. 2. Aside from mission planning considerations such as foothall rendezvous, etc., the radial maneuver sensitivity is of interest from another standpoint. Specifically, now that we have guidance systems with rather poor pointing accuracy under certain conditions we are likely to pick up an unmanted velocity increment in an up or down direction, which change the orbit - perhaps dangerously, certainly undesirably. These coefficients will allow you to estimate the effect of these dispersions on the trajectory. Addresseest (See attached list)

errorandum

See list below

TM Deputy Chief

NASA-Mannes Subjects it Center Mitsica Planeige & Agelysia Chifaige

DATE: AUG 29 1967 67-716-7-73

SUBJECT:

Apparently, 5/C 103 may fly one month after 5/C 101

1. At his staff meeting on Monday, George Low made a strong point about uncoupling Spacecraft 101 and Spacecraft 103. Apparently, he feels it is likely that 103 will be launched on a Saturn 5 which implies no pad readiness schedule implications. The LM-2 will be available at the Cape early and, apparently, Spacecraft 103 is trailing 101 by about one month. He feels that, although the absolute schedules themselves may be mushy, the relative schedule between 101 and 103 will probably be mintained.

2. The point of all this is that there is no obvious reason for delay of 3 months, or even 2 months, between the launch dates of those two spacecraft. In fact, he would like to see us retain the capability of flying one month apart. Apparently, crew training will not preclude this and I guess there is some sort of exercise going on in FOD to see if we can handle it. (This note is to make sure you are aware of the situation so you won't get caught : - - - assuming a period of 3 months is necessary between the two missions. I must say this had not been clear to me before.

Boward V. Tindall, Jr.

Addressees:

FS5/T. F. Gibson

TM/J. P. Mayer

C. R. Buse

M. Y. Jenkine JM13/J. P. Bryant

PML4/R. P. Parton

M/Branch Chiefs

PM: HVTindall, Jr. ipj

Bby U.S. Sarrage Bonds Regularly in the Payroll Sarrage Plan

MAY 100 00171000 004 FPMB (II GPR) 161-11.9

UNITED STATES GOVERNMENT

Memorandum

ro ... : See list below

FROM : TW/Deputy Chief

MASA-Manned Spececraft Center Mission Planning & Analysis Division

DATE: AUG 29 1967

SUBTRCT:

Inflight loading of the spacecraft computer erasable semory

- 1. On August 25 we had a little meeting of Flight Control and Flight Software people to discuss adding a program in the RTCC to reload the spacecraft computer erasable memory in flight. This might be necessary to do when the LM computer is powered up for the first time in each manned flight or in the event of a fresh start occurring in either the LM or command module program anytime in flight.
- 2. Flight Control Division has provided the capability of checking the memory of the spacecraft computer against stored values to inform the flight controllers if any of the critical erasable parameters are in error. This is pretty much a manual operation using a 1218 computer in Building 12, or some place like that, involving hand carrying the data from one place to another and manually scanning an on-line printout. A response time of between 30 and 45 minutes has been quoted from the request to initiate the check until receipt of the data.
- 3. Having determined that reloading the erasable is required, the subsequent task becomes quite formidable at present. It is necessary for the computer controllers to type out the uplink command message word by word which takes quite a bit of time and has high risk of being in error. We concluded that an automatic RTCC program to do this job could be added fairly easily which would speed up the process a great deal while providing high confidence that the message would be formulated correctly. (It should be emphasized that neither the checking nor updating of the memory, even using an automatic RTCC program, is a fast response procedure.)
- A. All together only a small part of the 2048 words of erasable memory is involved in this process certainly less than 200 words and probably no more than about 100. Charley Parker (PCD) intends to identify the actual parameters in the near future and include this list in a request for development of the new computer program to the FBD. He will also specify that it must be possible to modify these critical parameters stored in the RTCC program since many of them change as the flight progresses (i.e., accelerometer biases, spacecraft inertias and weights, etc.). Since the 8/C 101 flight does not even need a computer to perform

A foliar 3 miles and a computer to per constant its const

Bay U.S. Savings Bonds Regularly on the Payroll Savings Plan

the mission or support ever safety, we certainly could not justify to him this program a requirement for that mission. Movever, the second common making flight includes rendervous where ever wisk is involved as well as a possible in the lamb, so this will be needed on that mission. In order to reduce the number of common loads as much as possible, Homey Reston will request MIT to locate the critical parameters sequentially in example memory as often as possible in order that the Verb 71 uplink command formet can be used to the maximum extent. This format, you recell, makes it necessary to only identify the address of the first word and persits loading twice as many registers per normand message.

command messages 5. Did I just hear the RICC casel grount Marie W. Bladell, 120 Date 1 Addresses: (See attached list)

Memorandum

Fish/Chief, Mathematical Physics Branch

NASA-Manned Spececraft Center Mission Planning & Analysis Division

AUG 28 1967

67-34-11-71

三世代 医氯磺基酚甘己

PROM : TR/Deputy Chief

suspect: Analysis of IM rendezvous navigation is needed

This memorandum is just a reminder for a course or action items I discussed with you coming from the lumar landing GSOF review August 17. I think it is very important that you really get on with analyzing the performance of the rendezvous navigation in the LM using the radar. Two items you should specifically address are the manner in which the radar biases are handled and the frequency at which the computer should request observations from the radar. Regarding the former, I am very much concerned that there might be situations in which this sophisticated radar bias estimation somehow fouls up the entire navigation process. With regard to the frequency of the observations, I expect we will ask MIT to change the rate from one per minutes to one every six to ten seconds, or something like that, on August 28 & 29. Of course, that is just a guess and we will all be interested in getting your final opinion after you look the whole business over.

Boward W. Mindell, Jr.

PM/J. P. Mayer
C. R. Buss
N. V. Jenkins
PM3/J. P. Bryant
PMA/R. P. Parten
PM/Branch Chiefs
PB5/T. P. Gibson

Mi:Bitindall, Jr.:pj

UNITED STATES GOVERNMENT

Memorandum

NASA - Manned Spececraft Center Mission Planning & Analysis Division

70

1986/Chief, Rendesvous Analysis Branch

PATE: AUG 28 1967

67-78-7-70

M/Deputy Chief

SUBIRCY:

Does the landing radar mess us up?

This memorandum is to request that you look further into the business of how the use of landing reder observations in the spacecraft computer during descent influences the onboard determination of the final landing point. Hopefully, the landing point is essentially fixed prior to processing of the landing radar data but that may not be the case. It might really foul it up quite a bit. Our problem, of course, is to select the best LM position for use in subsequent real time rendervous mission planning, that is, lift-off time and plane change required.

Moward W. Tindell, Jr.

c¢:

M/J. P. Mayer

C. R. Buss

M. V. Jenkins

FM13/J. P. Bryant

PG4/R. P. Parten

TM/Branch Chiefs

785/T. P. Gibeon

M: Billindall, Jr.: pj

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

SPTISTAL POMI 119, 19 MAY 168 METTIGN SOA PPMS (SI SPS) 161-11-8

UNITED STATES GOVERNMENT

Memorandum

10

BG/Chief, Guidance and Control Division

MASA-Manned Spacecraft Cer Mission Planning & Analysis Consultation

BATE: AUG-25 1957

67-734-T-69

FROM : FM/Deputy Chief

SUBJECT: Head up and looked DAP-wise

1. Bob, it looks like I've had my head up and locked for the last year or so along with a few of my cronies over here, because we sure did misunderstand the division of responsibilities. And I am sorry about that because I am sure it must have contributed substantially to our problems.

2. In any case, the division of responsibility you lay out in your August 22 memo to me, 2023-145-67-739, looks just fine and we will take immediate steps to start working that way. In fact, we were on the verge of proposing just such an arrangement to you based on our assumption that POD had been told to keep their hands off of the Digital Autopilot in all respects. Obviously, the support you propose for us by your people will be badly needed, and I am sure based on various conversations we have all had we should have no problems working together this way.

3. Thanks for straightening us out!

Roward W. Tindall, Jr.

cc:

EA/M. A. Paget

EX12/B. C. Cheatham

EC/K. J. Cox

FA/C. C. Kraft, Jr.

FS/L. C. Dunseith

FS5/T. F. Gibson

R. Nobles

PA/G. N. Low

C. H. Bolender

K. S. Kleinknecht

PD/A. Cohen

FM/J. P. Mayer

C. R. Huss

M. V. Jenkins

FM13/J. P. Bryant

FM14/R. P. Parten

FM/Branch Chiefs

FM: HWTindall, Jr.:pj

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

determina from 100, 10 MAY 1703 Stringer Sta Joseph Las Cros 100-11, 2

UNITED STATES GOVERNMENT

Memorandum

O .: PM/Deputy Chief, Mission Planning and Analysis Division

DATE: AUG 2 2 1967

: EG/Chief, Guidance and Control Division

In reply refer to:

SUBJECT: Spacecre

Spacecraft computer program status

Reference is made to MSC memorandum 67-FM-T-52, "Spacecraft computer program status - particularly Sundisk," dated August 1, 1967.

The referenced memorandum reviews the status of the Sundisk computer program, and includes comments that could be misleading to those addressees who do not have the developmental bankground of the digital autopilot (DAP).

This memorandum is written to review the present responsibility for DAP designs, and to present appropriate comments on present DAP status

It is the understanding of the Guidance and Control Division that the management responsibilities for the DAP development, programming, verification, and spacecraft integration are as follows:

- a. Development (including requirements definition and design verification) Systems Analysis Branch (GCD)
- b. Software programming (including documentation) Flight Software Branch (FSD)
- c. Software verification (including documentation) Flight Software Branch (FSD)
 - d. Spacecraft integration GCD Project Offices

In addition, the Systems Analysis Franch has the responsibility to provide technical support to FSD for items (b) and (c). Examples are (l) review and initiation of DAP test plans, (2) analysis of DAP test results, and (3) initiation of independent DAP verification (design and software) by other support contractors.

If, as possibly indicated in the reference, this division of responsibility is not presently in effect, there is a misunderstanding, and MPAD, FSD, and GCD must initiate action to clarify the responsibilities in the DAP area.

Buy U.S. Savings Bonds Regulerly on the Payroll Savings Plan

Specifically, with regard to the present status of DAP programs, as mentioned in the reference, several comments are appropriate.

- approximately one year ago, and are documented in the 207/208 GSOP.
- b. Following the flight schedule reshuffle, the decision was made to modify the IM DAP to reduce (1) computer memory requirements, (2) computer execution time (particularly in powered descent), and (3) control system sensitivity to knowledge of environmental conditions. It should be noted that a significant number of potential design deficiencies have been established by the detailed IM-1 verification studies, and appropriate modifications have been included into the simplified IM DAP.
- c. TVC DAP performance has been sacrificed to accept a first structural bending mode frequency of 0.8 cpc. This was considered a compromise in order to accomposate the significant uncertainties in the modal data. However, with the present low performance control grins, the CSM docked configuration is considered unacceptable from a crew display and manitoring viewpoint. MIT has been directed to investigate alternatives to correct this established design deficiency, and is actively pursuing this objective at this time.
- d. Dr. Kenneth Cox attended the July 19, 1967, Software Development meeting at Cambridge, and stimulated a detailed discussion on general DAP development status. As a result, the management of MIT agreed to review the manpower requirements in the area of DAP development, and to initiate action to remedy the recognized DAP documentation deficiencies.

Since the management of the flight software programming task (which is a major portion of the present MIT contract) has been delegated to FOD, this responsibility should include the total product. It is our understanding that this applies to the DAP's as well as all other software programs. Configuration control of the DAP programs should be exercised in the same manner as in the case for other spacecraft computer programs. A single point management contact (Howard W. Tindall, Jr.) presently exists, and successful completion of the total DAP

designa is dependent upon close coordination between responsible elements of MPAD, FSD, and GCD.

PA/C. H. Bolender EG2/D. C. Cheatham

FS/Lynwood Dunseith

EA/M. A. Faget

PA/K. S. Kleinknecht PA/G. M. Low

FM/J. P. Mayer

EG23:KJCox:abb 8-22-67

UNITED STATES GOVERNMENT

Memorandum

ro : FM5/Technical Assistant

FM/Deputy Chief

DATE: AUG 28 1967 67-74-7-68

evaria semined Spacecraft Center Airman Planning & Analysis Dividuo

SUBJECT: Goodles affecting the RTCC gleaned from the 504 GBOP meeting

I am writing this memorandum to you in your position as RTCC program coordinator for MPAD. During the lunar landing GSOP review of August 16 and 17, I noted a number of items discussed which had some bearing on the RTCC program. I would sure appreciate it if you would look them over and see if the RTCC is able to do the jobs we assumed that it's being set up to do and/or is contained with the spacecraft computer programs.

- 1, There is a routine which MIT proposed for the CMC called lunar landmark selection (R-35) which we intend to delete based on the assumption that the ground can perform this function better and easier. What it does is to recommend the best five landmarks stored in the CMC to be used in lunar navigation. They are presented to the crew in order of priority with the landing site as number 1. I assume the RTCC is already prepared to supply this information in the proper format.
- 2. It was decided that coordinates of earth landmarks used for navigation would be in coordinates of half latitude (\mathcal{O}/z) and half longitude (\mathcal{I}/z) in order to obtain the necessary precision. These values are given to three decimal places. If it is intended to supply coordinates of landmarks from the ground, obviously they should be consistent with that unique system.
- 3. While in lumir orbit all altitude, apogee height, perigee height, etc., DSKY displays will be referenced to a spherical moon with radius equal to the current estimate of the landing site radius. (The only exception to this is the processing of landmarks which are referenced to a pre-established moon model.) The point here is that if sextent measurements are made enboard the CSM the estimate of the randing site radius will probably change and it will be desirable to make the RTCC consistent.

another good candidate for deletion. In fact, based on our recent discussions it is probable we may not even want to target for a circular orbit, but rather cut off the engine somewhat early in order to make the power-1 flight monitoring safer. In any case, if we delete this program it will be necessary that the RTCC targeting be made consistent with the standard Lambert prethrust program, and it may also be desirable to change the RTCC program to target for non-circular orbit.

5. Another deletion candidate is the lunar orbit plane change and circularization prethrust program, P-33. I assume it should be no problem to depend on RTCC targeting for this maneuver, in fact, I think we always assumed the ground was prime.

Howard W. Tindall, Jr.

cc:

FC/P. C. Shaffer FS/L. C. Dunseith

FS5/C. Parker

J. C. Stokes

/ DO DONE

FM/J. P. Mayer

C. R. Huss

M. V. Jenkins

FM13/J. P. Bryant

FM14/R. P. Parten

FM/Branch Chiefs

FM:HWTindall, Jr.:pj

SPECIAL PORM ISS. 16 MAY 1460 SENTISM SEA PPMIR (41 CPR) SET-11.8

UNITED STATES GOVERNMENT

Memorandum

FM5/Chief, Reentry Studies Section

* * SA • Manned Spacecraft Center ...ion Planning & Analysis Division

DATE: AUG 28 1967 67-FM-T-67

FROM : FM/Deputy Chief

SUBJECT: Is display of max g in P-61 any good?

During our lunar landing GSOP review someone commented that the display of max g in P-61 is of no use at all. It was said to be grossly in error for earth orbit reentry and of no value in determining appropriate action during entry from lunar return or following an abort when it is more accurate. It was noted that it would probably be desirable to replace that parameter with some other display and L/D currently loaded in the CNC was proposed as a candidate. As I recall, no action was taken at that meeting, but if you want to change this think it would be a good idea for you to recommend something as soon as possible.

Howard W. Tindall, Jr.

cc:
FM/J. P. Mayer
C. R. Huss
M. V. Jenkins
FM13/J. P. Bryant
FM14/R. P. Parten
FM/Branch Chiefs
FS5/T. F. Gibson

FM:HWTindall, Jr.:pj

OPT LAND (NI SEA) 101-179 NYA MEI SELLEN STATEMET LEGIN SEP 10

UNITED STATES GOVERNMENT

Memorandum

NASA-Manned Spececraft Center Mission Planning & Analysis Division

AUG 28 1967

67-FH-T-66

TO : FM7/Chief, Guidance & Performance Branch

FROM : FM/Deputy Chief

SUBJECT: Prelaunch DAP initialisation

During our review of the lunar landing GSOP's, the question of prelaunch DAP initialization was brought up. As far as I can see, there is no use for the DAP until after TLI, isn't that right? For example, the contingency orbit insertion maneuver does not use the DAP nor does CSM guidance of the S-IVB. Accordingly, I should think any initialization should be associated with the first midcourse maneuver while on the way to the moon. Isn't that right?

Howard W. Tindall, Jr.

cc;

FM/J. P. Mayer

C. R. Russ

M. V. Jenkins

FML3/J. P. Bryant

FM14/R. P. Parten F85/T. F. Gibson

FM: HWTindall, Jr.:pj

ON PRINCE (OF COM) HIS-NUE MAY ING CONTIGUE SPECIAL PRINCE (OF COM)

UNITED STATES GOVERNMENT

Memorandum

NASA-Manned Spacecraft Center Mission Planning & Analysis Division

TO : FM6/

: FM6/Floyd Bennett

DATE: AUG 28 1967

67-JN-1-65

FROM : FM/Deputy Chief

SUBJECT: Delete DOI thrust program, P-61

This is a reminder of the action item you picked up at the lunar landing GSOP review August 17. It was our desire, you recall, to delte the DOI prethrust/thrust program, P-61. It seemed at that time that it should be possible to make this small maneuver using the external Δ V targeting from the ground, particularly if a descent engine thrust of 30 or 40% could be used. You better assume it will be deleted unless we hear advice to the contrary from you.

Howard W. Tindall, Jr.

FM/J. P. Mayer
C. R. Buss
M. V. Jenkins
FM13/J. P. Bryant

FMC3/J. P. Bryant FMC4/R. P. Parten FS5/T. F. Gibson FM/Branch Chiefs

FM:HWTindall, Jr.:pj

THE IS THE CONTRACT OF THE PROPERTY OF THE PRO United States Government MALA . Normal Solenersh & Memorandum MTE AUG 2.5 1967 IN Director of Flight Operation Mayory Chief SUBJECT: Deentry guidance is perfect for 1/0 101 regardies of 1/D This memorandum is in response to your question regarding the reentry guidence with low L/D. It was erroneously reported to you in the August 3 MPAD Weekly Activity Report that, although the program could be modified easily to handle L/D as low as 0.2, it probably would not be implemented for Spacecraft 101. Actually, some consideration was given to not making any modification since without change the maximum miss distance was only 15 mm and that was only at the too of the footprint. We felt that if changing the program would slip its delivery date it was not worth doing it. However, MIT was so anxious to make the change they finally agreed it could be done with no schedule impact and were directed to do so. Actually, the only change that was necessary was to make it possible essentially to input our best estimate of L/D prior to entry. M/J. P. Myer C. R. Buss M. Y. Jenkins ML3/J. P. Bryant PRIA/R. P. Parten INS/C. A. Graves M/Brench Chiefs Minimiall, Jr. 195 Bay U.S. Savings Bonds Regularly on the Payroll Savings Plan

SATISMA FORM HE IS MAY HER SENTISM SEA FRANCE (IN SPE) HAVING

UNITED STATES GOVERNMENT

Memorandum

TO : See list below

FROM : FM/Deputy Chief

susject: Use of DES for lunar mission aborts

DATE: AUG 24 1967

- 1. The other day Carl Russ and some of the Flight Analysis Branch people gave an informal triefing on Apollo aborting procedures for the lunar landing mission starting with the translunar injection (TLI) maneuver. One thing that impressed me was the large number of situations in which dependence is given to using the Descent Propulsion System (DPS) to maneuver the combined IM/command module configuration. At that time, I remarked that some difficulty might be experienced in aligning the IM platform. This memorandum is to pass on what I have learned about that since then.
- 2. In the nominal lunar landing mission, the LM platform would be coarse aligned while the two spacecraft are still docked together by using a knowledge of the command module platform alignment and the relative orientation of the spacecraft navigation bases. This should be good to within something like 2 in all axes. The spacecraft would then be separated and the LM would carry out a fine alignment using its own optics. Obviously, this procedure cannot be used in an abort since it involves separation. As I understand it, it is possible to utilize some position of the LM AOT in the docked configuration to see stars for alignment, but this is not done since the LM RCS propellant costs would be too large. This is not necessarily the case with aborts since we may be quite willing to use the RCS.
 - 3. A more serious problem, however, is the high probability that this cannot be done unless the vehicles are in darkness, since reflected light off various components of the spacecraft is likely to blot out the stars. It is noted, that many of the abort situa-* tions requiring use of the DFS will have trajectories in which the spacecraft does not go into darkness. Furthermore, the proposed abort procedures often require that the DFS burn be made within 2 hours of the abort action which puts quite a tight constraint on getting the platform lined up. It certainly isn't a hopeless situation yet---for example, it may be that coarse alignment of the IM platform is adequate to carry out the maneuver.

although it must be emphasized that the present module platform may be operating to provide a restricted to se the course alignment. Also, even though ster patterns may not be visible in the AOT to viue star identification, by using the star selection routine in computer the coarse alignment may but no selected bright stur enough to the center of the AOT that an assumption that it is the proper star may be acceptable. In addition, proposals are being reals to shield the AOT Doe laproved performance. Based on these things the proposed about procedures my prove to be entirely acceptable.

Breaks W. Mindall, Jr.

Addresses:

CAID. K. Blayton

CB/As B. Shepard

J. A. McDivitt

B. Aldrin, Jr. CBL/T. P. Stafford

CF/V. J. Worth

C. H. Woodling

D. J. Grime

P. Kramer (2)

CF22/C. C. Thomas

CF34/J. B. Jones

BG/R. A. Gardiner

D. C. Cheathan

EG23/K. J. Cox

T. P. Line

E025/T. V. Chambers

EG26/P. E. Ebersole

EG27/D. W. Gilbert

EG42/B. Reina

EC43/R. E. Levis

C. F. Wasson

ET71/T. R. Kloves

EX/N. G. Poster

KA/R. F. Thompson

IN/W. H. Hamby

W. B. Evans

F. C. Littleton

B. L. Sturm

PA C. M. OW

K. S. Meinknecht

PA2/M. S. Henderson

PD4/A. Conen

PMO. E. Varnard

PICE. J. Wari

Miller niell, Jr. pj

PET/D. T. Lockerd

PA/C. C. Druft Jr.

3. A. Sjoberg

R. G. Rose

C. Royles

PC/J. D. Hodge

I. G. Prant

IC2/J. W. Roach

JC3/A. D. Aldrich

PCA/J. E. Bannigan

R. L. Carlton

PC5/C. B. Parker

J. S. Llevellyn

C. S. Lunney

C. E. Charlesworth

P. C. Shaffer

J. C. Bostick

R. D. Reed

M./J. B. Hammek

PS/L. C. Dunseith

PS3/J. C. Stokes

T. J. Oldson, Jr.

R. O. Robles

L. A. Fry

TWJ. P. Mayer

C. R. Huss

N. V. Jenkins

13/J. P. Bryant

J. R. Gurley

G. L. Hunt

R. P. Parten

more Chiefe

. P. Main

M. B. D. Weber

M. R. L. LYMII

SPITISHER, PRINCE THE, 49 SAAF THE SEPTIME SEA PRINCE (AT SPE) SEPTIME

UNITED STATES GOVERNMENT

Memorandum

ro : See list below

PROM : IN/Deputy Chief

MASA-Manned Sections of Center Mission Planning & Audysis Division

DATE: AUG 18 1967 67-74-7-62

SUBJECT: A new rope module for IM-1 computer

- 1. On August 16 General Bolender approved remanufacture of Module III of the IM-1 spacecraft computer program ropes. This was done based on the recommendation of both MIT and MSC technical personnel in order to correct two deficiencies.
- 2. The first, and most serious, is essociated with the Descent Propulsion System (DPS) trim gimbal control by the Digital Autopilot which, under certain circumstances, could result in an attitude instability during the DPS burns. MIT has estimated that the probability of this instability occurring might be as high as 20 percent. If it happened the ground controllers would be forced to prematurely shut down the engine, seriously jeopardizing the remainder of the mission.
- 3. The second improvement was to provide restart protection for the fire-in-the-hole sequence. Without this change a computer restart occurring at a critical time would have resulted in staging without igniting the ascent engine, also demanding difficult ground controller action.
- 4. The current schedule calls for MIT to release the revised version of this program by August 31 to Raytheon for rope manufacture. The final decision as whether or not to use this flight rope module has not been made at this time, as I understand it, but will depend on such things as the results of a series of tests to which the system must be subjected, and the flight schedule itself. I sure will be glad to see that bird fly before it drives us all over the brink.

Howard W. Tindall, Jr.

Addressees: (See attached list)

UNITED STATES GOVERNMENT

Memorandum

TO : See list below

FROM : TM/Deputy Chief

suggest: New/old platform for AS-501

NASA-Manned Spacecraft Center Mission Flanning & Apalysis Division

DATE: AUG 14 1967 67-74-7-61

人名英格特特勒 经

Cline Frasier told me today that the platform in Spacecraft Ol7 (that is, AS-501) has been replaced again by the one that was taken out several weeks ago. Apparently, there was an intermittent problem in one of the accelerometers. I believe Cline said they have replaced the Z-gyro. This change should be beneficial in terms of reducing dispersions at entry since the critical component, the Y-gyro, is supposed to be a real good one in the old, original platform.

Howard W. Tindall, Jr.

Addressees:

PA/G. M. LOV

PD4/A. Cohen

FA/C. C. Kraft, Jr.

S. A. Sjoberg

FC/J. D. Hodge

G. S. Lunney

TL/J. B. Hammack

F8/L. C. Dunseith

TM/J. P. Mayer

C. R. Huss

M. V. Jenkins

Branch Chiefs

EG/R. A. Gardiner

FM: HWTindall, Jr.: pj

bcc:

MIT/IL/R. Ragan

Memorandum

ro

See list below

PROM

FM/Deputy Chief

SUBJECT:

Crew monitoring of the LOI maneuver

1. On August 3 we had an informal meeting to talk about crew monitoring of the Lunar Orbit Insertion (LOI) maneuver. The subject came up in connection with Jim McDivitt's preparation for the STAC presentation. I'm writing this note because we tentatively agreed on some fairly basic points with regard to how we might use the various systems. These preliminary conclusions, if they hold up, could have application on some of the other maneuvers, not just LOI.

2. I am sure you are all aware of the slow response of the thrust vector control digital autopilot (DAP) in the Command Module when docked with the IM. In order to avoid exciting the low structural frequency of this configuration (about 1 cps), it has been necessary to reduce the response of the DAP to a very large degree. As a result, if there is an offset in the alignment of the initial thrust vector from the spacecraft c.g., turning moments will exist at the beginning of the maneuver causing large spacecraft attitude excursions which take a couple of long period oscellations to damp out. Our current estimate of the maximum excursion for LOI is about 8 based on the assumption of fully loaded propellant tanks and initial thrust misalignment of 1. The period of oscellation, as I recall, is in the order of 20 seconds for the half cycle in which the greatest excursion occurs and, unless the crew were prepared for it, it could create considerable concern on whether or not the guidance system was working properly. In the case of the LOI maneuver, which has a nominal duration of about 370 seconds. It is probable that the transverse velocity increments accumulated during this period should not jeopardize the crew. If this is true, the consensus is that the crew would be willing to passively ride out this perturbation.

3. Crew monitoring of the rest of the maneuver must be provided for two characteristics: duration of the burn itself and attitude error. With regard to the former, it was readily apparent that the only danger to the crew occurs from an overburn, that is, failure of the engine to shut down in time. There are three devices which

NASA-Manned Spacegraft Center

Mission Flancing & Analysis Vivision

AUG 14 1967

67-JM-T-60

2

can be used to monitor and cross eneck against overburn: the PNGS, the Δ V counter on the EMS based on acceleration measured along the longitude spacecraft axis, and the clock which can be used to compare against the anticipated duration of the nominal burn. An overburn of about 110 fps would result in lunar impact. This is equivalent to about 10 seconds of extra burn duration out of a total 370 second maneuver. (Acceleration level at burnout is approximately 1/3 g.) A 3 - low performance engine would extend the burn time just about 10 seconds which makes monitoring with the clock somewhat marginal. The EMS longitude accelerometer is said to have an accuracy of approximately 1.3 percent which is equivalent to about 40 fps for the LOI maneuver. It should provide a suitable cross check. In addition, lunar impact resulting from overburn, of course, occurs as much as 180° from LOI, thus, MSFN should have a good capability of predicting this event as soon as the spacecraft appears from behind the moon with sufficient time for the crew to respond following advice from the ground.

- 4. Monitoring attitude error is somewhat more difficult. It appears that a constant pitchdown error of less than 5° throughout the maneuver would result in a radial, A V downward causing lunar impact approximately 90° orbital travel following LOI, that is, at approximately first appearance of the spacecraft from behind the moon. It was proposed that the FDAI's be set up with one driven by the PNGS and the other by the SCS for attitude comparison purposes once the initial attitude transients noted above have ceased. In addition, it is necessary that the attitude time history compare favorably with a nominal determined preflight. The comparison against the preflight cominal is to protect against a degraded Z-axis accelerometer which could cause the guidance to deviate dangerously but would not be apparent from a comparison of the two FDAI's with each other. Differences in the FDAI's. of course, would indicate that one of the two systems was in error. Since there is no capability for vote breaking with a third scurce, there would be little option but to shut down when either of the two systems indicate a dangerous condition is impending. It should be noted, though, that attitude dispersions in only one direction, namely in the direction causing a radial velocity increment downward, creetes a crew safety problem. In all other cases, it would not be necessary to shut down the engine. Critical downward incremental velocity is approximately 440 fps.
- 5. I guess to sum it up, even without ground monitoring and without very much onboard redundancy, it looks like given some ingenuity ways can be found to assure crew safety. However, they may require a

willingness to have "blind" faith for a considerable time in a system that might be malfunctioning and may require an action that could prevent mission success, that is, premature manual shutdown of a perfectly performing system. Probably most of this is old stuff, but I thought it might be worthwhile to write it down.

Addressees:

CA/D. K. Slayton

CB/A. B. Shepard

J. A. McDivitt

E. Aldrin. Jr.

CB1/T. P. Stafford

CF/W. J. North

C. H. Woodling

D. F. Grimm

P. Kramer (2)

CF22/C. C. Thomas

CF34/J. B. Jones

EG/R. A. Gardiner

D. C. Cheatham

EG23/K. J. Cox

T. P. Lins

EG25/T. V. Chambers

EG26/P. E. Ebersole

EG27/D. W. Gilbert

EG43/R. E. Lewis

C. F. Wasson

EG42/B. Reina

ET71/T. R. Kloves

EX/N. G. Foster

KA/R. F. Thompson

KM/W. H. Hamby

W. B. Evans

F. C. Littleton

B. D. Sturm

PA/G. M. Low

K. S. Kleinknecht

PA2/M. S. Henderson

PD4/A. Cohen

PM/O. E. Maynard

PM3/R. J. Ward

FM: HWTindall, Jr.: pj

bcc: MIT/IL/R. Ragan

. PET/D. T. Lockard

PA/C. C. Kraft, Jr.

, S. A. Sjoberg

R. G. Rose

C. Kovits

FC/J. D. Hodge -

I. G. Kranz

FC2/J. W. Roach

FC3/A. D. Aldrich

TC4/J. E. Hannigan

R. L. Carlton

FC5/C. B. Parker

J. S. Llawellyn

G. S. Linney

C. E. Charlesworth

P. C. Shaffer

J. C. Bostick

H. D. Reed

FL/J. B. Hammack

FS/L. C. Dunseith

FS5/J. C. Stokes

T. F. Gibson, Jr.

R. O. Nobles

L. A. Fry

FM/J. T. Mayer

C. R. Huss

M. V. Jenkins

FM13/J. P. Bryant

J. R. Gurley

G. L. Runt

FML4/R. P. Parten

TM3/F. D. Weber

FM5/R. E. Ermull

FM7/S. P. Mann

FM/Branch Chiefs

MAY ING EDITION GEA FRANK (IN CPR) 101-11-0

UNITED STATES GOVERNMENT

Memorandum

ro : FM/Chief .

: JM/Deputy Chief

NASA - Manned Spacecraft Center Mission Planning & Analysis Division

DATE: AUG 8 1967

67-FM-T-59

SUBJECT: MPAD contractual effort provided FSD for software verification

1. As per your request, I have started to check into the MPAD contractual effort provided FSD for software verification. Jack Williams tells me that they do not have anything like 87 people, but more nearly 65. Furthermore, it is anticipated that this number will be reduced in the near future. At present, Lockheed has 43 people involved in developing the environmental programs for the MSC hit-by-bit simulations. The LM simulation is in operation now and the CSM simulation is scheduled for completion August 15. Following that delivery, the Lockheed effort could be cut back by at least 10 or 15 people with the remainder employed on program maintenance and documentation. As I understand it, a review of this task is scheduled for some time this month to establish FSD's requirements more precisely.

- 2. IRW has about 19 people, although 21 were requested, to actually carry out the program verification tasks. Their assignments have been recently augmented by request for runs for use in RTCC programs with the spacecraft programs. They have also recently been given additional tasks in independent testing of the DAP and the Abort Guidance System. As I understand it, this task is to be reviewed during the week of August 7. But Jack does not foresee a reduction possible here.
- 3. That apparently is the status as of now and I intend to take another look in a couple of weeks. Will let you know.

Howard W. Tindall, Jr.

FM/C. R. Huss
M. V. Jenkins
R. P. Parten
FM13/J. P. Bryant
FM/Branch Chiefs
FS/L. C. Dunseith
FS5/T. F. Gibson, Jr.
J. E. Williams

FM: HWTIndell, Jr.:pj

MAY INS EDITION BAR PPMP (IT CITE) WI-11.4

UNITED STATES GOVERNMENT

Memorandum

TO : See list below

FM/Deputy Chief

SUBJECT: VHF ranging by CSM for ascent monitoring

NASA-Monned Spacecraft Center Mission Planning & Analysis Division

PATE: AUG 8 1967

67-TH-T-58

1. Attention everyone!! As far as I can tell, everyone wants to get that VHF ranging device on the CM and there's a big effort going on right now to put together the proposal and justification for it. Most attention to date has been given to its use for rendezvous. It is obvious that it should be extremely valuable in saving RCS fuel and, doggone it, just helping the crew figure out what's going on during the braking maneuvers. The thing I want to make sure everyone knows is that this device also has the potential for getting us out of another problem that may be even more serious. And that is lunar ascent monitoring for switchover from PNGS to AGS.

- 2. Current planning calls for using the LM radar to obtain range rate (CM vs. CSM) data which, wher combined with the MSFN, permits the ground to evaluate performance of the two systems. But the LM radar data is going to be hard to get. Reacquisition is almost certainly going to be required during powered flight and assistance from the LM computer is going to be tough to provide -- even if the crew has time to fool with it.
- 3. Transferring this task to the relatively inactive CM via the VHF ranging could really bail us out if it can do the job---and it provides further justification for the VHF ranging as if that were needed!!

Howard W. Tindell, Jr.

Addressees: (See attached list)

grytgeni, Frans Hig. 16 MAT 1416 GETTICH GEA FRANK («E GTN) 180-11.0

united states government

Memorandum

CA/Director of Flight Crew Operations.

NASA-Rassed Sprecraft Canter Main Plancing & Saugest Committee AUG 8 1567

AVE: AUG 8-1967.

W PM/Deputy Chief

spects. Do y'all need the MIT hybrid facilities for ever breining

- I. I have talked briefly with Pete Woodling about scattling I probably ought to bring to your attention, too. As you know, we currently have one hybrid simulator in operation at MIT with both a CM and IM cockpit available and we are on the verge of bringing a second facility on line.
- 21. This second facility was partially produced with funds from the Electronic Research Center (ERC) with the agreement that it would be turned over to them no later them about July 1968. We were getting it specifically for Apollo specedraft computer program development which is supposed to be essentially completed by that time.
- 3. More recently, we have been looking to see if the follow-on work for AAP could provide sufficient justification to hold it beyond that date; but I really anticipate that such a justification will not materialize, at least for program development. On the other hand, I know there has been a recent investigation into the adequacy of the various crew training facilities for both Apollo and AAP.
- A: My question is are you interested in trying to retain this second hybrid facility at MIT for that purpose. I might point out it could provide the capability of conducting joint IM/CSM exercises. If you are, please let me know as soon as possible so that we can start work on obtaining the necessary funds, as well as notifying ERC that they must get their hybrid some other way. As I understand it, Chuck Mathews has agreed to get up the dough if we can prove we really need it.

Howard W. Tirlelle Tr

(See etteched list)

STREET, FORE ME TO MAY 1988 EXPERTS SEA PROMIS (AS EXPL) 100-16-0 STREET, FORE TO MANUAL

UNITED STATES GOVERNMENT

Memorandum

MASA: Manned Spacecraft Center Mission Planning & Analysis Division

EXT. AUG 3 1987

67-276-1-36

70' 🐃 : 🛚 Bee attached list 🐍

PROM : TH/Departy Chief

mark the state of the state of

mer: Inflight loading of the spacecraft compater erestble musory

- It Since we have notion the uplink capability in the LM, some things have been done to make it possible to load the crasable memory in the spacecraft computer while in flight, but possibly not enough.
- 2. This note is just to let you know that we are looking into a requirement for a RTCC processor which would provide an uplink command format to restore all the critical parameters in the erasable memory. In effect, this would be the capability of loading the K-start tape while in flight. This may be necessary every time we power up the LN computer in space as well as being necessary in the event of a computer fresh start occurring in either the command module or the LN.
- 3. In regard to the former, I have had some indication from MIT hardware people that there's no assurance that the smashle memory remains unchanged once the computer power is turned completely off an it is prior to launch on all manned LM missions. We are taking steps to determine MIT's real opinion on this in writing. Computer fresh start is the situation wherein the computer is not able to restart itself for continued operation and goes into a standby mode where manual assistance is required. This might be as a result of some kind of electrical power transient or something like that
- 4. As I understand it, Plight Control Division has established a requirement which is being implemented for examining the entire contents of the erasable memory, word by word, in a 1218 computer in the MCC. This computer would print out differences from those values which had been stored in it as being right. In the case of critical parameters (i.e., K-start type) leviations would be flagged out with particular emphasis. Of cd.rne, the real problem arises if writical differences are encountered shace, at present, it is necessary for the flight controller to laboriously formulate a command load, perhaps during a time-critical mission phase. It is this deficiency Charlie Farker and I are attempting to remedy!

Addressees: (See attached lisk)

Buy U.S. Salings Bonds Regularly on the Payroll Savings Plan

SPTOPAL PORM NO. 16 MAP HIS ENTTON GES FRANCE (IN GRO) 101-11-0

UNITED STATES GOVERNMENT

Memorandum

to 78/Acting Chief, Flight Support Division

NASA - Hanned Spacecraft Center.

BATE: PAUG #8 1987

67-JH-2-55

FROM : M/Deputy Chief :

sugger: Deep serious trouble

I realise it's none of my business, and it's getting to be less all the time, but you are going to be in deep serious trouble when the MIT contract negotiations for Apollo and AAP hit the fan in the next couple of months unless you have somebody pretty sharp ready to take over for Larry Fry. Incidentally, did you or Pete Clements put Larry in for one of those awards they give outstanding Air Force officers assigned to MASA? He sure deserves it.

Howard V. Mindall, Jr.

PA/C. C. Kraft, Jr. PB5/T. P. Gibson, Jr.

M: HWTindall, Jr. ipj

SEA FRANK (A CAL) 101-178

UNITED STATES GOVERNMENT

Memorandum

MASA - Manned Spacecraft Center Mission Planning & Analysis Division

785/Chief, Apollo Guidance Program Section

AUG 3 1967.

PROM: : ... IM/Deputy Chief

subject: Verify Bundisk for CSN/LM missions

You know, it's becoming more and more likely that we will fly a combined command module-IM mission using the Bundisk program. It might be a good idea for you to review the testing that is being done on that program to make sure it can handle that kind of mission, if you have not already done so

江南 明治 海流 在人名英格兰 医水子病 医水子病 医水子病 医皮肤病 医皮肤炎

House W. Mindall Jr.

PS/L. C. Dunseith
PS5/J. E. Williams
PM/J. P. Mayer
C. R. Huss
M. Y. Jenkins
R. P. Parten
PMI3/J. P. Revent

PM13/J. P. Bryant PM/Branch Chiefs

M: HVTindall, Jr. : 17.

STREET, FRANCISCO DE COMO DE C

UNITED STATES GOVERNMENT

Memorandum

Sec etteched List

M/Deputy Chief

NASA Manned Spaceeraft Center Mession Planning & Analysis Civisia

MINE JUL 31 1967

61-21-2-53

suggest. Spacecraft computer storage requirement for restart protection

1. In response to a question by George Low the other day, I checked into the amount of computer memory used to provide restart protection. On Sunburst, the LM-1 program, almost 1200 words or 4 percent of the total will entirely fill memory, 4 percent would be about 1500 words. Incidentally, 225 words of that 1200 are erasable, the rest hardwired.

2. That was a good question. I never imagined it to be so much. Although I really do not know what we can do about it offhand, we certainly will look into it. Storage is in short supply and we will have to leave out desirable capabilities.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Memorandum

See attached list

PROME IS THE DEPOST CALLES

Alic 1 Set. Bar. Alic 1 Set. Bior-2-2

Bjack: Spacecraft computer program status - particularly Sundial

- l. I have been putting off writing this note because it is rather paintful. To put it bluntly, the release of Sundiskathe interim earth wrbit command module spacecraft computer program—has slipped rather badly. What makes it painful is that it's not all together clear why it is slipping and we still haven't found a good way to monitor and predict these slippages further in advance of their occurring.
- 2. I am sure a substantial contributor was the digital computer facility saturation we experienced in January, Pebruary and March, when we were getting out Sunburst—the unmanned LMil program. The lack of computer time for Sundisk development during those critical months must have impacted us severely. Another cause was the delay in getting the hybrid facility converted to Block II as quickly as we hoped. It did not become operational until May. And it is my understanding that a backlog of hybrid testing in large measure in pacing program delivery even now. The of these changes slipped the configuration control date from August 28 where it stands today. Configuration control comes about a month prior to program release for rope manufacture which will be around October 1, I suppose. It takes about two months to make the ropes so they should be Lvailable well in a vance of spacecraft delivery.
- 3. Of course, another consideration is a make sure we are not lelaying flight crew training, but as far as I can determine, we are not? Substantial parts of the program are working and are now available for crew training. As I said, our problem is determining what is going on and what we can do about it.
- Actually, Boost does work in the bit-by-bit digital facility. The prois in the computer program simulating the Saturn in the byirid facility
 Entry apparently does still have some work required on it. The only of
 major problem area that I know of is associated with the Thrust Very,
 Control (TVC) digital auto pilot. Apparently, even at this late data,
 configuration has not been entirely frozen people are still diddling
 around with the design. I might also point out that we have decided
 move some of the entry constraints defining L/D of the spacecraft from
 to erasable memory so that we may respond as people play around with the

spacecraft ballast, etc. All testing, however, will be carried out assuming a L/D of .30. This verification testing, of course, is to prove that the program is bug free and rune. When the actual L/D is established, it may be desirable to run some more tests to determine the performance of the program under those conditions but not for verification purposes.

Comment of the state of the sta

- 5. We have agreed with MIT on a delivery schedule for the final version of the GSOP. The blue cover of versions of Chapters 3, 4 and 5 will be available by September 30. It is our understanding that Chapter 5 (program formulation) is in the final stages of typing including all MDRB's; Chapter 4 (program sequencing) is kept up to date at all times and will be ready for release; and Chapter 3 which defines the digital auto pilot paces the whole works, but is supposed to be finished by that date. We are told that the entry DAP is in good shape, the RCS DAP requires some modification and the TVC DAP is being redesigned. No documentation of it exists anywhere. Deplorable situation.
- 6. It is pretty obvious to everyone that the delay we are experiencing in getting out Sundisk will reflect on our delivery of the subsequent programs Colossus (CSM) and Sundance (LM). This, of course, results from not getting the full strength effort on these programs as soon as we had planned, but it is also evident from our experience that program development takes substantially longer than we had previously estimated. As of now Colossus and Sundance are scheduled for a release of February 1965, and that a good target date to shoot for. I wouldn't be too surprised though if the actual release date of the first flight-worthy version of the entire lunary landing Sundance and Colossus programs was as late as June 1968. Rest assured both MIT management and we here will make every effort to minimize these slips and to at least get a system working so we'll know what's going on.

 Howard W. Tindall, Jr.

Addressees: (See attached list) SAF PRINT (AL CAM) 101-10.0

UNITED STATES GOVERNMENT

Memorandum

FA/Director of Flight Operations

ELITE OUL OL ISE?

TROM

IN/Deputy Chief

67-3H-7-51

一点了你多的神经数数的影响特殊的所谓

SUBJECT:

We're gomma, find out if the PAC is a good substitute for the flight

Tou re-opened an old conders of ours at the similator meeting Tuesday and I just want to tell you we are going to take another good hard look at it. I am talking about how we can convince ourselves that the PAC performs in a manner truly equivalent to the flight ropes. As you quickly perceived, we really hang our hat on testing with the PAC. Actually, about the only experience we get with the flight ropes is Sim flight and that's a pretty limited test. Jack Williams is going to obtain and review the documentation of the analysis engineering studies, actual test results, etc., which I suppose must have been available for somebody, wasoever it was, to decide that use of the PAC was adequate for final systems verification. It certainly is a critical open area, at least in our minds, which we should have been readily prepared to discuss at any times. We better get ready now.

Rovard V. Tindall Jr.

CCI

FA/S. A. Sjoberg

FS/L. C. Dunseith

F85/T. F. Gibson, Jr.

J. E. Williams

TMJ. P. Mayer

C. R. Russ

M. Y. Jenkins

R. P. Parten

Branch Chief's

FM: MTIndall, Jr.: pj

UNITEL STATES GOVERNMENT

Memorandum

TO S. TW/Assistant Chief

MATEL GUL 27 1967 WHILLIAM STATES

FROM : THE Deputy Chief

Support Greater dispersion at entry on AS-501 with the new Dal

You have expressed concern about the somewhat poorer performance of the new platform in Spacecraft Olf. While at MIT last week Dan Lickly and I spoke to John Miller about this. John says the component which concributes the most to dispersion in flight path angle at the entry interface is the Y gyro, as you know. The dispersion on this replacement gyro is almost exactly double that of the old one [3.0 KERU in place of 1.6 MERU, whatever that is]. According to a curve he had this alone will result in 0.6 flight path angle dispersion at entry (3.-) assuming a perfect new, update prior to the second SPS maneuver.

Moverd W. Tindell Jr.

cc:

PA/G. N. Low

PD4/A. Cohen

PA/C. C. Kraft, Jr.

S. A. Sjoberg

FC/J. D. Hodge

G. S. Lumey

M./J. B. Hammack

Ja/L. C. Dunseith

M/J. P. Myer

Cr R. Buss

M. V. Jenkins

Branch Chiefs

EG/R. A. Gardiner

FM: HWIIndall, Jr.:pj

morandum:

JUL 27 1967 BI-TH-T-19

FROM : JM/Deputy Chief

SUBJECT:

There will be no Selva epheneris in the RICC after separation

We have had a couple of meetings of FCD, FSD, MFAD and I'm people to discuss some of the RTCC computer program requirements for the lunar landing missions. One item coming out of these discussions, which may interest you, is that there is currently no intention of carrying an ophemeris for the 8-IVB after it separates from the Apollo spacecraft. As you know, there have been recurring discussions of the need for this in order to evaluate the possibility of recontract. I should point out that this was not really an area of disagreement among these people. I think it was fairly well agreed that the random venting of the tanks following loss of attitude control and ground tracking capabilities would make any such ephaneris meaningless.

Boward W. Tindall. Jr.

Addressees:

CA/D. K. Slayton

CB/A. B. Shepard

J. A. McDivitt

E. Aldrin, Jr.

CB1/T. P. Stafford

PD:/A. Cohen

PM/O. E. Maynard

PA/C. C. Kraft, Jr.

S. A. Sjoberg

R. C. Rose

FC/J. D. Hodge

B. F. Kranz

FC2/J. W. Roach FC3/A. D. Aldrich

FC4/M. F. Brooks

R. L. Carlton

FC5/C. B. Parker

J. S. Llevellyn

FM: HVTIndall, Jr.: PJ

rc5/G. S. Lunney

C. E. Charlesworth

P. C. Shaffer

J. C. Bostick.

FL/J. B. Remmok

75/L. O. Dunseith

785/J. C. Btokes

IN/J. P. Mayer

C. R. Miss

M. V. Jenkins

Branch Chiefs

MS/R. B. Ernill

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

giftenia form he, 14 may 1903 Enfren 866 Met 141 CFB 161—13.8

UNITED STATES GOVERNMENT

Memorandum

I See attached list

melleputy Chief

Configuration control of the spacecraft computer programs for 50% is imminent

1. This note is to inform you of our current plans regarding final definition of the CSM and IM spacecraft computer programs for the lunar landing mission - Colossus and Sundance. It is anticipated that MIT will mail the complete Chapter & of the Guidance System Operation Plan (GSOP) on July 26: This is the chapter prepared by John Dahlen and Jim Nevens giving the dequence of operations. We will distribute copies of this as soon as they are received for review during the following two weeks. A gigantic Software Control Panel meeting will be scheduled for about August 15, 16, and 17, although hopefully it won't take that long, to go through the entire GSOP for both the command module and IN answering all questions and discussing all inputs, comments, requests for changes, etc., in short, to establish an MSC position on this documentation. MIT, North American and Grumman will be invited to participate. In the following week a (hopefully) smaller group will go to MIT for two or three days starting on August 22 to provide final technical direction to MIT which will put the GSOP's under configuration control. That is, after that time changes will have to be individually approved by the Software Control Panel. At the same time, we will hold our computer memory storage review and will trim the programs down to acceptable size if necessary. And it is almost certainly required in the IM.

2. As you know, it is our intention to fly all manned IM flights with Sundance——although some of the processors which are required only for the lunar landing missions may not be completely checked out in the ropes used on the carlier earth orbital missions. The point is the IM program used for the earth orbital missions will be defined and controlled by this GSOP.

HWOLKU NYCKOL Bovard W. Mindall, Jr.

THE PERSON NAMED AND THE PERSON OF THE PERSO

67-34-3-48

Mission Planning & Analysis Division

JUL 27:1967

PM:HWTindall, Jr.:pj

MAY 1967 BOTTON GAA FINE SET COM 101-11.A

United States Government

Memorandum

10 2 PB/Acting Chief, Plight Support Division

JUL 27 86 Mari 07-74-7-47 8

PROM : TR/Deputy Chief

wspect: LMSS RICC program test documentation needed

This may be a waste of time what with the IMSS on its way down the tubes, but during that review of the RTCC computer programs a few weeks ago it was obvious that the contractor has no intention of providing any test specification or test results documentation. In fact, I am pretty sure their need never occurred to them. You really did not have anyone at the meeting presenting your requirements and I doubt if they have responded to my meager comments. I suggest you look into this matter and make sure those people are doing what you want them to. You'll probably want some stuff to compare the IBM RTCC programs with.

Bound W. Tindall, Jr.

PA/C. C. Kraft, Jr.
FC+/M. F. Brooks
PM/J. P. Mayer
FM/C. R. Huss
FM/M. V. Jenkins
FM/R. P. Parten
FM13/J. P. Bryant
FM5/R. E. Ermil
FB5/J. C. Stokes, Jr.

FM: Harindall, Jr.: pj

UNITED STATES GOVERNMENT Memorandum M/Technical Assistant cec 1 JK Deputy Chief Landing point dispersions given commincation loss in lunar orbi 1. During Chris Kraft's staff meeting of July 17 there was a long discussion regarding the necessity of a beacon to help the recovery people find the spacecraft. It was pretty well concluded that it was not needed as long as we knew where the spacegraft landed to within several hundred miles. Of course, if the various guidance and tracking systems are in operation we should certainly know the landing point much better than that and so the beacon is coming of it. 2. The reason I am writing this note to you is that it occurred to me that if we were to lose comminication with the commind module while in lunar orbit subsequent to separating from the LM, maneuvers would have to be computed and executed based on enboard information. [Of course, the IKI mireuver would be carried out using the block data transmitted prior to communication loss.] It is probable that the mid-course navigation would have to utilize star-horizon observations

2. The reason I am writing this note to you is that it occurred to me that if we were to lose communication with the commund module while in lunar orbit subsequent to separating from the LM, maneuvers would have to be computed and executed based on onboard information. [Of course, the TKI mareuver would be carried out using the block data transmitted prior to communication lose.] It is probable that the mid-course navigation would have to utilize star-horizon observations to obtain the star- vector which would be used for mid-course correction maneuvers and for initializing the reentry guidance systems. I'll bet the landing dispersion under these conditions could be very large, although Pete Frank, who was sitting maxt to mo, felt it would still be within several hundred miles. In any case, I asked him to look into this situation to make sure we have not overlooked something that might bear on the beacon decision. It is to be noted that this contingency situation is of a high enough possibility that we are providing several large computer programs onboard the spacecraft to handle it. Would you see that all the necessary task assignments, etc., are taken care of if you agree this job should be done.

Howard W. Tindall, Jr.

cc: (See attached list)

By U.S. Savings Bonds Regularly on the Payroll Savings Plan

UNITAD STATES GOVERNMENT

Memorandum

TO I See attached list

JM/Deputy (mief)

67-32-25 JUL 27 987

SUBJECT

Spacecraft computer program flow chart status

Just a note to you cats who are interested in flow charts for the spacecraft computer programs. MIT has had a small group headed by John Tenize who have done what appears to be an excellent job of establishing standards to be followed in the development of flow charts. A group of SDC people have been given the job of taking the program listings and rough flow charts from the programmers and turning those into the final product. We were given a schedule defining when various portions of the Sundisk earth orbital command module computer program will be completed. It should be finished no later than November 17. Substantial portions will be finished sooner than that, of course, available for distribution. It has been our goal to do those processors of most immediate interest first. Anyone interested in the actual schedule should get in touch with Jack Williams of the Flight Software Branch.

2. I really think we've got this thing i wing well now (finally!) and will be interested in your comments. It was our intention to set up some system of discrepancy reporting in which we will encourage you to participate. The intent is to inform MIT people of differences between the program listing and the flow charts and the GSOP's such that they may be corrected. This should also provide an incentive for the programmers to thoroughly check the flow charts before release, since we are requiring that they sign off on them as being responsible for their accuracy. Naturally, we intend to execute any programmer whose flow charts contain a significant number of errors.

Howard Was Pinds 11 with

Memorandum

PA/Director of Flight Operations

bkraft 10 % UGL 26 togg

7201

Milepaty Chief

susper:

Notes from ASPO Manager's staff meeting & July 24

L. I hope I didn't hart your feelings by going to George Low's staff meeting instead of yours, but he specifically asked me to come and I felt you would agree that would be best. If not, please advise. I did pick up a few items that may be of interest to you which it was the purpose of this memo to relate.

4、一、北海村交通4萬城區地

- 2. According to ASPO's bar charts, the launch date for Spacecraft 017 is September 23. The shipping date for Spacecraft 101 is three weeks behind schedule, that is December 31. And IM-1 launch date is now about October 31. Of course, those dates are unofficial.
- 3. Apparently, there has been a problem with the IM-1 computer and they are sending it tack to Raytheon. It does not work with the actual flight ropes, and they have replaced it with a new computer which does.
- testing procedure, particularly at RSC. George Is very concerned that every test anyone can think of is added, and was emphatic in directing that he wanted Apollo testing to be carried out in a manher much more like Gemini than it is at present. He wants to establish an MSC Test Requirements Document which defines when and where each test is to be run as well as spacecraft configuration. This is to be a configuration control document which can only be changed with high level concurrence. There was some speculation that this might lead to a fight with KBC.
- 5. It was reported that Buz Rello does not report to Dale livers at North American which means they have two vice presidents to deal with now and they expect this will make things a little more difficult.
- 6. It seems the spacecraft problem currently requiring the most attention and effecting schedule most has to do with panel coating. Both the LM and CBM people describe the process as being quite difficult to control and not certain to work. Incidentally, the materials and process to be used on the command module are different than that had on the LM.

Buy U.S. Savings Bonds Regularly on the Payfull Savings Plan

However, in both systems a large number of coatings must be applied under strictly controlled conditions. This coating, of course, is to provide fire protection or at least to prevent its spread.

YA/8. A. Sjoberg

YC/J. D. Rodge

FL/J. B. Hammack

PS/L. C. Dunseith PM/J. P. Mayer PM/C. R. Russ

PM/M. V. Jenkins PM/R. P. Parten

M/Branch Chiefs

MillWTindell, Jr. spj

UNITED STATES GOVERNMENT

Memorandum

10 : I See list below

race, t. 30/Depaty Calef

suspect: 134 is launched with air

Matri: JUL 20 1967 Gramanas

I guess everybody already knows this, but I just learned that they intend to launch all IM's with air rather than oxygen in the cabin. As a result, the spacecraft never sees an oxygen environment with pressure greater than about 6 pei. Furthermore, no tenting in done on any of the systems with pure oxygen at higher pressure than that. Of course, the purpose is to reduce the possibility of fire

moverd W. Proteil, Jr.

Addressees

PA/C. C. Eraft

S. A. Sjobers

JC/J. D. Rodge

FL/J. B. Rasmack

TWJ. P. Mayer

75/L. C. Dunseith

MIENTIndall, Jr. 193

No.: 67-114

Date: August J. 196

Tile:

经验证的证据的证据的证据的证明的证明的

MANNED SPACECRAFT CENTER ANNOUNCEMENT

CHIEF OF AROLLO DATA PRIORITY COORDINATION

APOLLO SPACECRAFT PROGRAM OFFICE

Mr. Howard W. Tindall, fr., has been appointed Chief of Apollo Data Priority Coordination. In this assignment he will coordinate all MSC and contractor efforts in developing the sechniques and procedures for the operational utilization of the trajectory control systems involved in manned Apollo musidus. This effort has in the past been called in manned Apollo musidus. This effort has in the past been called in manned Apollo musidus. This effort has in the past been called in manned Apollo musidus. This effort has in the past been called in manned for "Data Priority Specifications." Specifically, his job is to determine the operational fules and procedures for properly utilizing the Apollo systems, including primary and backup systems; to investigate the system capabilities and constraints and to evaluate their accuracies; to establish the criteria for system selection during various phases of the sizesion; and to establish the proper spacecraft and ground displays and mass of these displays. His responsibility will include the utilization of the spacecraft propulsion, guidance and control systems, as well as the associated support from the MSFN and Mission Control Center.

Mr. Tindall will report directly to the Manager, Apollo Spacecraft Program and is, in effect, on loss from his present position as Deputy Chief of the Mission Flanning and Analysis Division in the Flight Operations Directorate. A charter delineating his responsibilities and mode of operation will be distributed within the next several weeks. I request that you give Mr. Tindall the fullest cooperation in this important effort.

George M. Low

Apollo Spacecraft Program

DISTRIBUTION:

UNITED STATES GOVERNMENT

Memorandum

TO . I See list

FROM : TH/Deputy Chief

suspect: Spacecraft computer program mames

DATE: DAT 0.8 DES 67-7N-7-41

Mily Wall Waller St.

I used to think MIT was a little odd when it came to selecting names for the spacecraft computer programs with all that weird preoccupation with the sun. But now I see they were right all the time and the rest of the world is nuts - let's name the missions sequentially as they lift off the launch pad. Good grief, Charlie Brown! Having seen my error I'd like to apologize to our Bostonian friends for the abuse - and worse I used to heap upon them and publicly announce the end of my campaign to change the program names. I think the old ones are just great and recommend you learn to recognize them if you're interested in this business.

There are only five names you need to remember; they are:

a. SOLRUM 55

This contraction of the more familiar "Revision 55 of Solarium" was adopted for the AS-501/AS-502 program when it was released to Raytheon for rope manufacture. (The numerical part of the name is the number of the program assembly on which the final flight verification testing was carried out. This is a characteristic of all program names).

b. BURST 116

Contracted from "Revision 116 of Sunburst", this is the name of the program for the unmanned LM mission we used to call AS-206.

e. SUNDISK

Sundisk is the interim Command Module program now scheduled for release in July which could be used for any earth orbital development flight. It probably won't ever be flown but it's availability will ensure that flight software does not pace the first manned mission. Dave Hoag suggested I could remember this name if I associated it with the shape of the command module - sort of a disk - and, by golly, it's worked for me.

d. colossus

This is the name of the command module program designed to suppost the lunar landing mission as well as all development flights anyone has

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

thought of, so far. According to Webster's New Collegiate Dictorary 14 also means (1) A statue of gigantic size; as, the Colossus of Rhodes; 4 statue of Apollo, about 120 feet high, made by Chares about 280 B.C. (2) Anything of gigantic size.

Pretty good except, I miss the Bun.

This program and Sundance (below) will undoubtedly be updated prior to rope manufacture for each mission, incorporating modifications and corrections as necessary. I expect these will be identified by different assembly numbers rather than completely new nemes.

e. SUNDANCE

You can remember the name of the LM program for all manned missions by associating dance with the LM's lovely legs - another of Dave's suggestions - and adding "Sun" as usual.

I'm serious, as usual.

Mound W. Tindall. Jr.

Addressees: (see page attached)

UNITED STATES GOVERNMENT

Memorandum

F KA/Assistant Manager, Apollo Applications Program Office

: FM/Deputy Chief

BATE: 67-7M-T-40

susject: MIT can handle spacecraft computer program development for both Apollo and AAP to their mutual advantage

> This memorandum is a compilation of my ideas and opinions in response to a request from your office regarding the questions of whether MIT should be chosen to perform spacecraft computer program development for AAP, and, if they were, would the impact on their Apollo work be acceptable. They are based on my observations and experiences over the past year while participat. ing in MSC's technical direction and management of MIT work on the Apollo program for which I continue to have some responsibility.

For the past several years, MIT has been engaged in the development of the spacecraft primary guidance system corputer programs to be used on the Apolio lunar landing mission and associated earth orbital development flights. It is estimated that approximately 80% of the AAP computer programs will consist of the specific processors MIT has developed for those Apollo missions. schedules for main line Apollo and AAP missions overlap each other, which makes hi certain that program development on both will also be a simultaneous and continuing effort. The advantage of having the same organization a in fact, the same people - do both of these tasks is obvious in terms of program quality, efficient use of this country's resources and, of course, Cat. But of greater importance here is the effect on product delivery schedules. Whereas MIT is in a position to begin work and achieve a high level of productivity almost instantly, any other contractor would require a considerable period of time for personnel training and familiarization and for the procure ment of program development facilities.

Special emphasis should be given to the problem of procuring the extremely complex digital computer and hybrid simulation facilities required to support program development, and, in particular the very large and sophisticated computer programs which make up an integral part of them. These facilities are absolutely mandatory to perform this job and would require snother contractor about & year to duplicate.

Therefore, in answer to the first question - should MIT be chosen to do the AAP spacecraft computer programming - I must state that to choose any other contractor is implicit acceptance of a flight schedule slip. There is no choice.

If that is the case, what does this do to the effort on the main line Apollo

work at MIT? I am convinced that the effect will be more beneficial then detrimental. Although there will be occasions when Apollo will suffer to some extent, it will be an acceptable amount, and the advantages gained will more than compensate for it. Let us exumine separately the two main combdities we are procuring from MIT, personnel and facilities.

a. Personnel

- 1. It is MIT's current intention to reduce their staff by about 40 people over a three-month period starting in June 1967. These are subcontract personnel chiefly in the AGC coding and testing business. This represents the first of the personnel cuts which would continue to the place throughout the rest of the Apollo program.
 - 2. Based on the best manpower requirements estimate we can make today for the next year or so, it appears that the present MIT staff is within about log of that required to carry out both the Apollo and AAP work. In fact, I feel it is somewhat more probable that they will still have to reduce their staff in early 1968 rather than to increase it even with the AAP work to do.
 - 3. Even if this estimate proves to be wrong due to unforeseen difficusties, it is important to note the rather outstanding capability MIT has demonstrated for quickly staffing up with competent personnel. In the period between June 1966 and March 1967 they increased their technical staff by 150 people. This was done at the same time that they were undergoing extensive reorganization and establishing substantially different working procedures, and producing the AS-204, AS-501, and AS-206 flight programs and the AS-278 Guidance System Operations Flans:

In summary, Apollo cannot employ the entire MIT staff today, and even AAP may not take up the slack. But if more people are required, MIT has shown they can get them and put them to work quickly.

b. Facilities

- 1. MIT is equipped with two Honeywell 1800 digital computers which our predictions show should be able to handle the entire Apollo and AAP Logram development task through calendar year 1968.
- 2. MIT is phasing in an IBM 360/75 digital computer which is expected to be completely operational this fell. It alone should have more than double the computing power of the two Honeyvell 1800 computers.
- 3. It is MIT's intention to have the Honeywell computers taken out although I plan to resist this until the end of this year divintil I develop some real confidence in the IBM 360/75. In any case, it is of defit that, if necessary it is possible to delay this computer phaseout for all long as we need to
- h. The vital digital simulation programs deplicating the spacecraft systems, the environment of space and earth, the Apollo Guidance Computer (ACC), etc.,

are completely compatible to AAP and whall be mantained in a state of readianess for both types of computer.

5. The hybrid simulation facility consisting of spacecraft cockpit mockup, AGC and memory simulator, and sophisticated analog and digital computers and programs was found to be an invaluable program development tool on AS-204. This facility has been reworked for Block II and a second more-or-less duplicate facility is being brought on line now. It is ASPO's intention to turn this second facility over to NASA's Electronic Research Center in Boston next year. It will be necessary that this be retained via AAP funding for the mutual benefit of AAP and Apollo. But it is clear that these two simulators are adequate for both projects.

In summary, the capability of the program development facilities at MIT are still growing just as the Apollo program development effort is reaching its peak - soon to taper off. Current plans are to phase out about one-half of it within the next twelve to eighteen months. Even with AAP some of this phaseout should and would probably continue.

Therefore, I feel there is no other choice than to choose MIT for AAP space-craft computer program development for schedule reasons alone although it is evident there are substantial advantages accrued in the areas of program quality and cost. Furthermore, it is probable that Apollo will also benefit from this arrangement in that it will be necessary to retain some excess capability at MIT to handle the peak load periods and emergencies which AAP will, in effect, be providing now at no cost to Apollo - I refer here to both personnel and facilities. And of course unique programs developed for AAP would be readily available to Apollo. As far as I can see, it is the only reasonable way to go.

Howard W. Tindall, Jr.

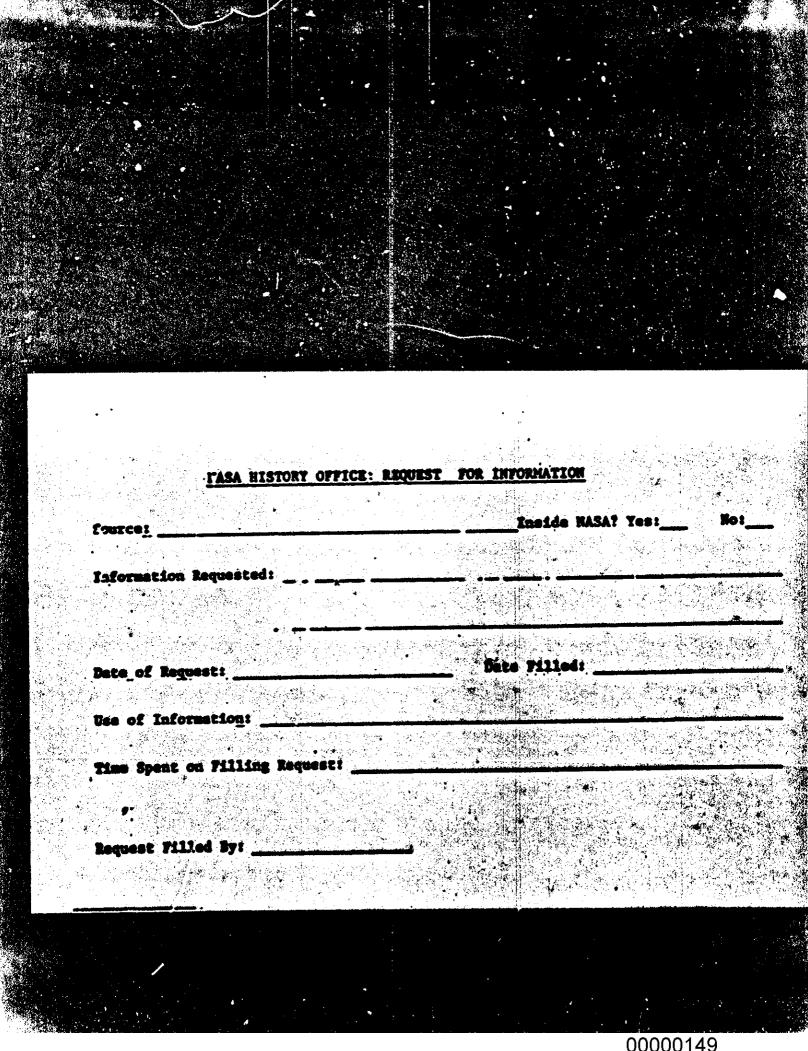
cc:

FA/C. C. Kraft

FA/S. A. Sjoberg

EG/R. A. Gardiner

FS5/T. F. Gibson, Jr.


FS5/L. A. Fry

FM/J. P. Mayor

FM14/R. P. Parten

FS/L. C. Dunseith

FM:HWT:dbp

may took without too too too too

UNITED STATES GOVERNMENT

Memorandum

70 t See list

races ': FM/Deputy Chief

BATE: 67-FM1-39

SUBJECT: A new spacecraft computer program development working philosophy is taking shape

It's becoming evident that we are entering a new epoch regarding development of spacecraft computer programs, and I thought I'd try to put my impression relating to this into words and get them but in the open.

Until a few months ago, our most basic problem was getting the spacecraft computer programs - and ultimately the flight ropes - completed in time to support the official flight schedule. This presented such a challenge to the people involved that intense reluctance was created to making changes and, after a certain point, even correcting known deficiencies in the programs. Where necessary, work around procedures were invented as the only possible solution. Since the Jamuary accident the Fituation has changed considerably in two ways. First of all, the flight schedule has slipped to an extent that computer program development no longer paces the flights in any way (including crew training and system tests) and, secondly, the value of quality has become supreme. These things are most clearly evident right now on LM-1 where it's almost unthinkable to fly with any known deficiencies in the program - even those which would only affect very low probability contingency situations win spite of the fact that the flight ropes have already been manufactured. I feel it's quite likely the decision will be made to rework the LM-1 program and remanufacture ropes regardless of impact on any of MIT's program development work, including delivery of the manned mission computer programs. In fact. we have asked MIT to determine the extent of this across-the-board impact assuming all of the known deficiencies in the IM-1 program are removed. no matter how minor. Much more significant, however, is that without doubt this situation is forcing us to adopt a new working philosophy. which should be recognized and included in all of our planning - program development schedules, man loading, crew training, spacecraft systems tests, etc. It is clear that, as Ed Copps puts it, program "shelf life" is very short. That is, it is extremely unlikely we will ever fly with ropes manufactured substantially in advance of the mission; instead of releasing the flight program for rope manufacture at the earliest possible date we should release it at the latest possible date.

The next question to be answered is - how far should the work on these assemblies proceed before being frozen (if you call slush "frozen") and put on the shelf watil some key milestone associated with spacecraft flight readiness? Should complete flight qualification Level 5 testing be carried out with the realization that changes will come along forcing us to revise the program and thus to repeat substantial portions of the flight verification? Or should be merely carry the program development through Level 4 testing, resulting in an assembly on the shelf which is bug free as far as we know, but which has not been completely flight. qualified? There are arguments for both positions. We have asked MIT to consider this subject - program development working philosophy - and to recommend their preference. We here at MSC will do the same and within a month will be prepared to adopt what appears to be the best over-all compromise. In any case, I'm sure it will force us to maintain a larger MIT staff and more program development facilities in order to be in a position to maintain and modify these programs until we finally release them. And we are less likely to have to throw sets of ropes in the garbage can so often.

I'm not trying to flag this all out as a big problem area. It should certainly be easier to handle than our previous "schedule is king anything is better than nothing" type of problem. But I'm sure what we do will have some fairly significant implications on everyone involved in the business of program development as well as the various users of their product and I thought it worthwhile to bring it to your attention.

Howard W. Mindall, Jr.

Addressees: (see page attached)

UNITED STATES GOVERNMENT Kelook morandum 67-701-38 FROM: 1 FM/Deputy Chief Majacr: Reduced L/D presents a spacecraft computer program problem This note is to help insure that the word gets around regarding reduced command module reentry L/D. MIT has heard rumors that the L/D may be reduced to a value of .25 and emphasized during our program development plan meeting that they are fairly certain the present spacecraft computer program formulation will not handle that. The current formulation is designed to handle a minimum L/D value of .30 and, although they do not know how far this limit can to extended, they feel certain major rework will be required for .25. This is not a new discovery. Our reentry experts in MPAD have been saying the same thing for some time. Howard W. Tindall, Jr. Addressess: (see page attached) Hear Bill. Hores ut right for many les /2 left lechnique in the first place & en ask us you'd better get the cathers with working on the wifet miles #5# Biy U.S. Savings Bonds Regularly on the Payroll Savings Plan 00000152

UNITED STATES GOVERNMENT

Memorandum

TO . I See list

t 7M/Doputy Chief

NASA-Manned Spacecraft Center Mission Planning & Analysis Division

PATEL MAY ALL TO

25. 1988. 入家在CIVIDITY / 1987

61-310-37

Subject: Invitation to an AAP spacecraft computer program requirements shindle

On April 20 we had our first meeting to establish spacecraft computer program requirements for the AAP missions. Sufficient time will soon have elapsed to permit substantial progress on the action items issued at that meeting making it worthwhile to gather again. Accordingly, you are invited to attend such a meeting at 9:00 a.m., May 18 in you are invited to attend such a meeting at 9:00 a.m., May 18 in Room 3037 of Building 30. Based on these discussions, it is expected that the Flight Software Branch of the Flight Support Division will prepare a first draft of formal program requirements to be used by MIT and MSC in laying out the AAP program development work.

For some reason beyond my recall, we failed to discuss the AAP lunar mission involving the CSM/INSS combination proposed to back up the first Apollo lunar landing mission. Therefore, I propose we remedy this oversight at this same meeting and suggest you come prepared for that, too.

Howard W. Tindall, Jr.

Addressees:

CA/D. K. Slayton

CB/A. B. Shepard

CF/W. J. North

CF/C. C. Thomas

EG/D. C. Cheatham

EG23/K. J. Cox

EG23/T. P. Lins

KA/R. F. Thompson

KWA. B. Evenc

KM/W. H. Hamby

MM/F. C. Littleton

KM/B. D. Sturm

FA/R. G. Rose

FA/C. Kovitz

PO/J. D. Hodge

FC/E. F. Kranz

PC5/C. 8. Lupney

PM: HWT: CM

PS/I. C. Dunseith

PS/T. Y. Gibson, Jr.

PS/R. O. Robles

PM/J. P. Mayer

PM/C. R. Huss

PM/Branch Chiers

PM/Branch Chi

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

UNITED STATES GOVERNMENT

Memorandum

TO.

Bee list

The Party Chief

67-270-36

MASA-Manned Spacecraft Center

Mission Planning & Acalysis Devisable

SUBJECT: (Some things Mi Coppe is terried about

Ed Copps (MIT) called the other day about some things that worry him.

I figure if he's worried enough to call, it's probably worthwhile to
dictate this note and send it to you.

As you recall, to help relieve our computer storage problem, we removed the automatic gimbal lock avoidance capability from CAL/MARU - the space craft computer processor which provides automatic attitude anneuvers.

MIT has recently conducted a study which revealed that about 20% of the automatic attitude change maneuvers in a typical mission would now violate that, constraint. El Copps has become rather concerned about this relatively high frequency. He feels that since the crew will be formed to override the computer so often they may lose confidence in CALCMANU altogether and will always choose to use the manual mode. Ed emphasized that if this were to happen, the HCS fuel requirements which their atticy showed to be relatively acceptable would rise irastically. Perhaps special emphasis will have to be given this matter in crew training.

One other thing that Ed was worried about at the same time was the space-craft change to lower the docking collar latch preload from 4000 lbs. to 600 lbs. This modification probably would lower the frequency of first structural mode for the CSM/LM configuration below the current estimated value of about 1.0 cps. As has been reported elsewhere, this would probably require extensive redesign of the TVC Digital Autopilot filter, perhaps to the extent of requiring a completely "different control systems design" approach. This whole business apparently scares the help out of Ed Copps, and T guess if I knew mough I would be frightened too.

Boward W. Timball, Jr.

Addressess (See attached list)

Buy ITS. Savings Bonds Regularly on the Payroll Savings Plan

morandun

KASA-Manned Spececraft Center fiing & Analysis Omision

IM/Deputy Chi

majeor: Notes from the Mit program development plan meeting of April

A few things came out of our program development plan meeting at NIT on April 25 that might be worth recording for my shapery and your information.

- We have decided not to produce a unique in progress for its first manned mission. What this basically excepts to is that MIT will continue with program development pretty much as they have been for AS-208, but instead of freezing the progress at some point in sime (probably in June) and flight qualifying it for rops mammfacture, they would begin to add in the extra programs required to support the lunar landing mission. This would contime until the complete luner landing program has been developed (probably in December 1967) or until it became apparent that the projected release date of the complete program was no longer consistent with the scheduled launch date. If the latter happened, we would freeze the program in its most suitable configuration, flight qualify it, and release it to Raytheon for rope manufacture. This procedure should provide the best, most complete program for the first manned LH and should also result in the least work required by MIT. In addition, recognizing that "shelf life" of a program is really quite short, we remain in the most favorable position to correct deficiencies as they are uncovered without having to perform extensive reverification or, even worse, baving to remake rope modules.
- 2. In line with that last remark, I would like to emphasize that no one involved in the development of programs as complex as these would ever be so naive as to claim a program was completely free of bugs. In fuc. I would like to emphasize just the opposite - that it is almost certain that deficiencies will exist in the program we ultimately fly! Of course, extensive effort will have been spent in-checking the program to prove that it is safe and should perform adequately in the mission. It will always be our respons sibility to describe accurately the quality of the flight programs to manage. ment, highlighting known deficiencie, and describing, in whatever detail to required, the verification procedures which have been undergone in addition to stating some measure of our confidence in flight worthiness. We sust not mislend management by overstating the quality of the flight program, since to do so is to implicitly take it upon oursalves to make the ultimate decision that a program is flight worthy - and this is not our job. This subject was discussed at MIT, and the reason that I montion it here is that I'm not cure this position is clearly understood by everyone

Buy U.S. Serings Bonds Regularly on the Payroll Savings Plan

- 3. I had thought, and have told others, that Sundisk the old AS-205 program was a true subset of the AS-504 command module program. This turns out not to be the case in that not only must unique processors be added to Sundisk to support the lumir landing mission, but also some of the Sundisk processors themselves must be modified before they vill be capable of supporting both earth orbital and lumar landing missions. Our current plans are not to make those modifications prior to the Sundisk release.
- As 205 program in accordance with the wishes of various elements of MSC, such as use of the reticle for aligning the platform, providing the pilot the "mark" input capability from his couch position via the DSKY, and some others. There is at least one big one, however, which will not be added because its impact on release of the program is too great. This is the capability of performing rendezvous mavigation (i.e., state vector updating) utilizing reticle observations.
- 5. We have requested MIT to provide us an MER for changing the program such that it will recognize depression of the Standby button as a signal both to "Standby" and "Proceed". We expect to make this program change regardless of whether or not the computer itself is modified, since that is immeterial to the program and the likelihood of its being implemented in the computer is quite great.
- 6. We had been asked to have MIT investigate and propose RCS jet select logic capable of handling individual jet failure as opposed to total quad failure. This would obviously require considerable amount of MIT effort and significant changes in the spacecraft computer program if it were to be implemented. As a result, we told MIT to do nothing on this until a much more precise requirement had been established by MSC.
- 7. We have recently had discussions with MSFC regarding the use of the LM spacecraft computer servicing their Apollo Telescope Mount (ATM). There was some concern expressed by MSC people that it might be necessary to provide coupling of the LM and command module guidance and propulsion systems, particularly to carry out the terminal rendezvous in the docked configuration. Without commenting on the advisability of this cross coupling for this purpose, I would like to remind overyone that according to MIT a data channel has been provided on these computers to handle that sort of an interconnection. I must confess that I didn't realize they existed.

Development of the spacecraft computer programs seems to have become routing enough that our program development plan meetings should occur no more frequently than once every three or four weeks, and it's our intention to schedule them that way. The next meeting is now set for May 10, in Beantown,

Howard W. Tindall, Jr.

Addressees: (See attached list)

" United States Government

Lemorandum

See list

t PK/Deputy Chief

Computer program seguirements for AAF

Misk-Ramed Specials College Mich Transit 2 6.3 CONTRACT VALUE

67.710. A

On April 20 we had a security to assemble preliminary spacecraft economy program requirements for SAP missions 1 through to this is one step in the process of usecubling a progress requirement decement acceded to provide a basis for sensible contract mentions with MT and to provide a basis upon which KIT may proceed with preparation of the Guidage System Operations Plan [GROP] Personnel from AAPO, MEAD, FED, and Call wore represented. (I reglected to include Flight City people through some soil of stupid overalcht, and I'm very sorry short that we will be getting together again. I'm sure.

We did this job in two steps, first by identifying which of the individual processors in the AS-504 his sai command modula patigrams were in contary and which ones could be deleted for the AAP missions. And then we went on to identify, as well as we could, all of the additional enique AAP requires cents which meet be added in. We abbreved to liet programs to support all of the proposed flight operations we have about board on the assumption it would be better to dry them from the list later than to risk overlooking them.

Pollowing is a "required/deleted" list of the Alleth Car processors to support AAP 1 and AAP 3. [AAP 1 is a CSM [ASS conditation which will junder derivous with the AAP 2 SIVB workshop, marless, and multiple docking edapter AAP 3 is a 56-day durinton CSM which renderson with the AAP 5 [ASS/COLD] Telescope Mount (AZI) and the AAP 2 SIVB workshop . Of course, a tabler of non-rission programs [executive and bervice types] for listed here built also be carried ovar. Our preliminary estimate is that these delectors will from up about 5100 yords of storage wertainly and su stressive amount.

Beautied

POO CHE Idlina

FOL Prolaunch Initialization

PO2 Cyrc. Complex

PO3 Option Varification

POS CAR BEATURE

106 CM Pover Deve

PIL DI Confer

Par Sunders our Best petition Pal Grand breek

Por traction of the

My The Property to Market

The U.S. Section Device Report Print for Bernald Section 11 or

Car processors (cont'd)

Recuired

PET CAC Undate

P30 Esternel Av

T31 Lambert Ain Point

P34 Transfer Phose Initiation (WI)

P35 Imposer Phase Mid. Cour (DM)

Pio BIS Thrust Mineuver

Phl ICs Thrust Liberry

PiT Virget limiter

PS1 INU Alignment Determination

P52 IN Re-uliqueent (Bentant)

P3 AM Re-allignment (Packup using Releacope)

PGL Entry Maneuver to Reparate

P62 Latry Sep. Warequer

P63 Entry Initialization

Pol Entry Post .05 6 Plane

167 Entry Final Mane

PIA TOT (ILL)

P/5 Tild (14)

1630 Orbit Turameter Display

Kit Hemicavous Parameter Display

VA source SEA

The following expedilities may be retained, modified or added to the Co program processors lioted above:

1. Digital Autopilots:

- A diction sucception (a) is required to control acs translation said attitude acheuvers for the following vehicle configurations:
 - CFM alone
 - (2) Con with Liss attached
 - CON with IMAM attached
 - Chi vith cluster(s)
- A digital autopiint(s) to provide thrust vector control (avc) of the BIB engine is required for translational maneuvers of the following vehicle configurations:
 - CUM atono
 - COM with 1228 netocina
 - Dalland to MIN HE IN MILL
- A special digital autopilot may be required to control the up-land modile RCD during the firing of the solid buttomodete, if they have the provided for a backup deoral t especifity on the AAP 3 command medules

the following papatitions are required in support of Clarker's jumps films uneversions

A CHARLES

737 Return to Burth Jurges (RSK)

PTO Sere Periline Turiet (PIR)

P65 Entry Up-Control #

Pil 121 Benreb

166 Poory Dollistic Plans

- lend other components which have up the over-all cluster | with the command module "may base" in a der to provide attitude control of them.
- c. A landmark sighting routibe utilizing the sextent.

3. Additional requirements to support AAP 1:

- a. As a result of the severe Settern psyload constraint, it may be necessary to provide guidence to the SIS engine serving as a third stage of the leunch vehicle to get into orbit. If this does become a normal part of the mission, as opposed to Contingency Orbit Insertion previously considered for animaline Apollo, it will probably be necessary to also include seems processing and displays to apport crew tackup procedures and about procedures.
- b. If a rendervous radar is select to the compand module, it will probably be desirable to utilize its observations in the rendervous navigation processing. This could be in addition to or in lieu of sextuat observations.
- c. Special preferred alignment programs are almost certainly regulard in support of variour experiences to provide unique attitude hald expedibition and/or attitude time history profiles.
- d. Special rolld retrorocket sequence to assist in attitude control during and after their firing my be necessary.
- e. New telemetry downlists will be required.
- f. Auto optics search and gimtel lock avoidance programs deleted from the main line Apollo programs - may be restored to the program for AAP if storage permits.
- g. Since the command module has been assigned the teak of many complex operational rendervous, it may be desirable to add the onboard capability of isrgeting the nominal rendervous reneuvers [CIL and CDN] programs we have deleted as ampaceasary from the AAP 4 LN program. Storage probably will not permit this 1200 word addition which is certainly not madelery.
- h. Sees inflight test programs may be desirable to whork cut the fuldance system prior to its use following extended powered sown periods.
- 1. Reconsideration is being given to including an automate fremeworth braking capability.

Required

POO LCC Idlian POL 166 Initialization 102 468 Initialization POS LGC Startum 106 Ltd Pewer Down P20 Rendezvous Mavigation PM Ground Track Determination P25 Frederrod Bracking Attitude PRY LOC Undate P30 External AV Frethrunt Pil General Lambert Pak app Freibrast P35 TEM Prethrust Pil RG Torost Prop. 147 Pount Rostian Pal INV Orientation Determination PSS ISS Residen Pod Tau Healign (Backup using LFD reticle) P74 TH (CHM) 175 TH (CSH) REO Orbit Intensier Display RBL Residence a Percentur Display R32 Target AV

Printed

FOI Syntems Took 710 Fredicted Leunch Time (CFF) PIL Predicted Lounch Time (TPI) Pla Powered Ascent Galdance P17 TPI Bearch P22 RR Lunar Surface Navigation PE' CBI Pretbrust P33. CMI Prothmust P36 TPF Maneuver Pic Dis Torust Prog. REARS Though Trop. 155 James Surface Aliga (Formal) F16 Lundy Surface Align (Packup) For any Time Lounch Align 160 Tredicted Junar Land. Time Pol DOI Mineuver P63 Landing Braking P6: Landing Approach P55 Inhoing (Auto) Pic Landing (ROD) Fel Landing (Bineal) 170 DFG Abort PIL APS Abort PT2 CST (CSM) PT3 CON (CSM) P76 Transcarth Inject (TEI) Backup

Since the LM will be equipped with neither a Descent Propulsion System [D13] nor an Ascent Propulsion System [ARS], it is also possible to delete three AS-506 LM digital autopilots completely - rangely, the AFS, DFS and the command module-IM docked DFS [so-called SFB cacking].

The following capabilities may be retained, modified or added to the 100 processors listed above:

- 1. RCS digital entopilots for control of translation and attitude nancuvers in the following vehicle configurations:
 - a. LtyADM, with molar arrays both extended and retracted
 - b. IM execut class only [42 it is possible to jetition the Auti],
 - c. 1M/A9M with CUM nutrohes, with solar armys both extended and retracted.
 - d. LH when docked to the cluster.
- F. Cables ognated ICC prevention registrated Buller, Tipologic files

- a. New telemetry downlists will be required.
- b. Restoration of gimbal lock avoidance.
- c. Some inflight test programs may be desirable to check out the guidance system prior to its use following extended powered down periods.
- d. The MSFC is currently studying the desirability of utilizing the LGC to support their ATM and control moment gyro requirements as opposed to providing their own computer and/or special electronics. If they determine the LGC should be used they will document their requirements.
- e. Reconsideration is being given to including an automatic rendezvous braking capability.

It is anticipated that, within a month, a more formal spacecraft computer program requirements document will be distributed by the Flight Software Branch of the Flight Support Division. It will incorporate the results of action items assigned to various MCC elements at this meeting, such as:

- 1. The more precise definition of DMP requirements, which is the responsibility of GCD [Cox/Line].
- 2. Definition of the special preferred attitude program requirements in support of experiments, assigned to MPAD [Bunt].
- 3. The detailed requirements for the LMSS mission, assigned to AAPO and MPAD [Ernull].
- 4. Definition of the solid retro sequence requirements, assigned to MPAD [Weber].
- 5. The reconsideration of automatic braking, assigned to GCD [Klinar].

The purpose of distributing this memorandum is to inform you of what is going on in this area as well as to solicit your comments. We are particularly interested in being informed of omissions and would appreciate your assistance in providing more detail in the definition of the items above.

Howard W. Tindall, Jr.

Addrenneen: (See attached list)

UNITED PTATES GOVERNMENT

IN See list

FROM: FM/Dojaty Chief

Subject: Mil's digital computer Satilities are said Torontal.

On April 12 at MIT we spent almost the whole morning discussing justification for and status of the IEM 362/73 computer installation they use for opaceuraft computer program development. As of today, we haven't really recoived the issue of whether or not we should retain that computer at MIT. On the other hand, I think the exercise was fruitful in that we all - MIT and MSC - have a much better understanding of the situation.

Briefly, the situation is something like this. Back in November and December we were faced with the problem of producting command module and IM programs for the A8-258 mission to se flown in August 1966. This was soing to put heavy demands on the MIS digital computer facility, which consists of two Honeywell 1800 computers. At the tame bine it was easy to see that during the first two or three months of 1967 that facility would be entirely saturated with work on the AS-206 ammand in mission which, flying sooner, necessarily had higher priority. At that time the only apparent thing we could do was to get their IBM 360/75 operational at the ear. ... t possible date, which at that time appeared to be in February of 1967. As it turned out, in spite of our very best. Intense efforts, the 360/75 has not become an operational facility even today, and our current estimate is thur it probably will not be carrying any appreciable load until August or September. The programming work remaining to be done to make it operational is to finish development of the MAC "compiler and to debug the This subsided programming systems. Although MIT does met admit it, I suspect that there are also significant berdware problems in the IBC installation which dequire Tixing.

Now that all of the manned missions have slipped to a point where spacecraft computer programs are so longer pacing, there is no question in my mind that the two Mone, well 1800 computers at MIP can carry the entire load at MIP for the foreverse a future - say through calendar year 1968. In other words, we no words for the IPM 360/75 unless it offers us bone significant that is a MIP's position that the IBM 360/75 does not work much more the Moneywell 1800's over the period from now until the end of 1986 has used offer growth potential. Thus they feel that it is to be all advantage that they retain the IMM 360/75 and phase out the Money are not not propose to remove a Holaywell 1800 around the first of that, which I feel is at least three or four months too soon. And it was

trought out in our discussion that the propul scrappell like what we can tained until postflight analysis of the AN-502 minsion is completed. Therefore, the cost of phasing over to the INN 300/75 is more expensive limit getting rid of it, but something that subt be compidered in that the longy well 1800's mure be phase. Out somethy, hand of all this, and an MIT moral factor, CAD's Assistant Division Calle, being Bressets, secondended, that agreed, that we should probably allow MIN-18 present on the course they have charted.

lut this thing still bugs me, as I got shold of the Boneylell representative to explain the over-all situation. No is now in the process of checking with his company to see if it is preside to obtain a significant cort reduction on the MIT Honeywell 300 complete semining that they would be retained until the sound in 1 of calesdar wear '68, operating to a three shift, seven day a week substile. At that sine, someideration boild be given to pleasing in one of their fineyvell 1200 committers, which by that time should have proven itself truly operational in the Tield. In addition to saving money, this approach permits as the thin adventage of the competibility of all the program in was as MIT on the Roneywell 1800 plus avoiding having to debug the over-ult system like we are going through her on the IDM facility. Fort of this plan, of course, would be to faces the IBM 366/75 from MIP at the entitlest presible data and to stop all effort on the programming for that fedulity walsh has forced MIT to divide its attention and efforts in order to have programs which will operate on both the Honeys well 1800's and the IBM 360/75. This division of effort in very distressing since very high level talent is required and work on the Sonstwell 1800 programs will be going down the Grain if we ewitch to the ISE 360/75. Coins to a Honeywell 8000 means all effort could be concentrated on doneyidle 1800 programs which will be compatible with that medite.

Our next decision point is when the Hodeygell representative reports back to Ralph Everett and me on the result of his Hopeyvell 1800 rental reduction mission. If those redults are favorable, we will investigate with him the configuration needed by MT.

If, as I hope, this is attractive in terms of both cost and growth potential, we will examine with MIT the haventages and discoverages of their surrenu approach versus the Hopeyvell approach.

Howard V. Zimail, Jr.

Addressent (See attached list) SUNITED STATES GOVERNMENT

Memorandum

HASA-Manned Spacecraft Center Mission Planning & Analysis Division

TO

See list

DATE:

APR 2 1 1967

FROM .

M/Deputy Chief

67-710-32

SUBTRET!

Descent engine gimbal polarity error

A serious misunderstanding between MIT and Grumman resulted in a situation which would have been catastrophic to the AS-206 mission if it had not been discovered. Specifically, the direction the LM descent engine gimbals move when commanded by the spacecraft computer was opposite to the way they were supposed to. Upon discovery of this, Grumman immediately dispatched a TWX widely distributed through MSC, and perhaps elsewhere, placing the fault for this inconsistency on MIT. Since it was easier to make the necessary modification in the software than the hardware, we chose to do that - thus giving further weight to the idea that the MIT work was faulty, which I simply do not believe to be the case. I am distributing the attached letter from MIT which explains the situation in some detail in order to dispel the erroneous accusations you may have heard and believed.

Of course, finger pointing is not constructive, and I would like to emphasize that a number of positive steps have been taken. Their purpose is to improve the understanding of the various parties associated with these interfaces and improving coordination of their testing to make sure a vehicle is never flown with anything as fouled up as this. Also, it is worth noting that this discrepancy was detected well in advance of the mission and in time that something could be done about it fairly easily. Even if we had done nothing, I would expect on future spacecraft that this sort of thing would be found sooner as a result of much earlier delivery of spacecraft computer programs and earlier readiness of the test facilities to verify its interfaces with a flight hardware.

Howard W. Tindall, Jr.

Attachment

Addressees: (See attached list)

Maring to

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS

INSTRUMENTATION LARD RATORY

CAMBRIDGE, MASS. 02139

AG 160-67 6 April 1967 Page 1 of 3

NASA Manned Spacecraft Center Houston, Texas 77058

Attention: Mr. W. R. Kelly, PP7

Through: NASA/RASPO at MIT/IL

Descent Engine Gimbal Polarity Error Subject:

(a) LTX 500-52, Coursen to Young, 23 March 1967 References:

- (b) LM PGNCS Performance and Interface Specification. LSP-370-3, EDP Sheet #12, Paragraph 3.1.4.3(a), 18 March 1966
- (c) Functional ICD LIS 540-10001
- (d) LGC Electrical ICD LIS 370-10004 (Rev. B signed 25 May 1966), Sheet 39
- (e) Memo. Stameris to Hoag, 23 March 1967
- (f) Telephone call, Kayton and Hoag, 23 March 1967
- (g) Report R-527, Rev. 1, Guidance System Operations Plan AS 206, Vol. 1, January 1967, pages 3-65 and 3-66
- (h) Telephone call, Gibson to Miller, 23 March 1967
- (i) Letter AG 144-67, Stameris to Smith, 27 March 1967

Gentlemen:

Ref. (a) TWX from GAEC states the AS 206 program, SUNBURST 113, which was delivered from MIT to the GAEC FCI 6 DOF simulation laboratory had a reversal of polarity in the DPS trim gimbal commands. This GAEC TWX further states ... "It was determined that this reversal was not caused by a wiring error in the laboratory but was due to a programming error.

MIT firmly disagrees with GAEC on this subject and herewith wishes to go on record that the polarity incompatability was not due to an error in the SUNBURST 113 AS 206 LGC program but was due to the FCI 6 DOF simulation at GAEC being wired backwards from that specified in controlling interface documentation. Apparently LM 1 is also wired incorrectly.

We believe the LM wiring mistake occurred due to confusion between the actual commanded motion of the gimbs! from the subject signal and the eventual vehicle attitude response. If the command signal asks for a positive rotation of the descent engine trim gimbal with respect to the vehicle, the response of the vehicle with respect to space is negative angular acceleration - both variables defined in a right handed sense about the appropriate axis. The signal in question is that which commands a rotation rate of the trim gimbal. Its polarity definition should be and has been in terms of this variable and not in terms of the resulting spacecraft motion.

Pertinent controlling interface documentation to define the DPS trim gimbal drive signal polarities are the P&I spec (Ref. b), the Functional ICD (Ref. c), and the Electrical ICD (Ref. d) all of which have both GAEC and MIT signatures. In each of these documents the signals in question are identified as those which drive the descent engine trim gimbal. In each of these documents the signals are labeled in substance as "plus (or minus) pitch (or roll) trim gimbal, signals." The LGC program was consistent with these definitions.

It has been stated (Ref. e and Ref. f) that the AS 206 GSOP, (Ref. g), which is written by MIT, supports the polarity convention with which GAEC wired the spacecraft. This is supposedly demonstrated by an equation on page 3-65 which relates positive vehicle angular acceleration to the positive variable "&". This variable, however, is not the gimbal trim angle as argued, but instead is the angular difference of the vehicle CG to the thrust vector about the gimbal pivot. The gimbal trim angle command is variable "U" which is defined on page 3-66, a definition which is consistent with the interface documents. (An equation in the GSOP relating to this command signal is written with an error. Although this error was discovered and did not get propagated into the program for AS 206, the GSOP correction will not be made until the next revision of that document which is now in process.)

In order to fix the incompatability, MIT has been directed by MSC (Ref. h) to make changes in the SUNBURST program so as to send gimbal trim commands according to the polarity with which the spacecraft is wired. This change now exists in SUNBURST, Revision 116. Because this revision now is in violation to the ICD, MIT has initiated an interface change request authorization to GAEC (Ref. i) to issue an IRN making an appropriate ICD change.

Very truly yours,

D. C. liceg

Apollo Guidance & Navigation

DGH:alr

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER

HOUSTON, TEXAS 77653

APR 2 5 1967

IN REPLY REFOR TO:

67-FM1-31

THROUGH: NASA Resident Apollo Spacecraft Program Office

Massachusetts Institute of Technology

Instrumentation Laboratory

Cambridge, Massachusetts 02139

TO:

Massachusetts Institute of Technology

Instrumentation Laboratory

Cambridge, Massachusetts 02139

Attention: D. G. Hoag, Director, Apollo G&N Program

FROM:

Project Officer Guidance and Navigation

Apollo Spacecraft Program Office

SUBJECT:

Contract NAS 9-4065, Letter of Direction Concerning Program

Development

This letter is to modify your contractual obligation to provide a unique spacecraft computer program for use on the first menned LM mission (formerly designated AS-208). This change in direction is brought about by the slip in the launch schedule for that mission, which makes it probable that sufficient time is available to complete the development of the IM lunar landing program (formerly AS-504 LM) in time to support the first manned LM mission. In confirmation of agreement reached between MIT and MSC representatives, it is understood that the development of the LM lunar landing program will proceed in such a way that no more than three months would be required between a decision to stop implementing additional capabilities into this program and the date of its release to Raytheon for rope manufacture. Our intention, of course, is to monitor the development of this program and the scheduled launch date such that if it becomes apparent the lunar landing program will not be available in time, it will still be possible to provide a flight qualified program for this development mission, which has a capability no less than had been planned for AS-208. Proceeding in this manner should assure provision of the highest quality flight program for that mission as well as resulting in a significant reduction in work. It also reduces the risk of having to make modifications in that program which might result if we were to have released it unrealistically early.

It may be necessary to give special consideration to the command and downlink formats to assure compatibility of the spacecraft computer program with their counterpart in the MCC-H to avoid unacceptably expensive effort. Items of this nature will be negotiated on an individual basis.

W. R. Kelly

bee:
BCA42/RASFO/MIT
BCA43/RASFO/ACSP
BASA Hgs, Attn: MA
ASPO Files (2)
BG55/P. McGathy
EG/D. C. Cheatham
EGA4/W. J. Rhine
FA/R. G. Rose
FS/L. C. Dunseith
PA141
PD4/A. Cohen
PF/R. W. Lanzkron
PM2/R. Ward
PM2/C. Perrine
PM3/R. Battey
PP7

FM:HWTindall, Jr.:cm 4/21/67

EPHENIA MINE ME ME MAJE 1945 MINOS MAN MAJE CAL CINE MINOS

UNITED STATES GOVERNMENT

Memorandum

TO '1 F555/T. F. Gibson, Jr.

MTM: APR 1 8 1967

FROM 1 FM/H. W. Tindell, Jr.

67-700-30

suspect: Proceed button

Looks like we're approaching the final chapter in the proceed button story. As I understand it, all manned Apollo spacecraft will have computers wired such that the standby button serves the dual purpose of standby function, as before; and a proceed function duplicating Verb 33 Enter. At least, that is the current intention. Apparently there is some little uncertainty remaining on the first manned command module mission - Spacecraft 101 - in that Raytheon may not deliver the computer in time and an old, unmodified one might be used. However, as I understand it, there is no disadvantage in fixing the program such that it will respond to the standby button as noted above even though the computer has not been modified. If not, I see no reason for not going shead with the change in the computer program immediately rather than waiting to see if Raytheon will deliver on time. MIT is checking this, aren't they? - and will follow up with the necessary MURB.

Boward W. Mindell, Jr.

cc: CB/T. P. Stafford EG/R. A. Gardiner FA/C. C. Kraft, Jr.

TM: HWT: CH

UNITED STATES GOVERNMENT

Memorandum

ro : See list

DATE: APR 3 1967

FROM : FM/Deputy Chief, Mission Planning & Analysis Division

67-JML-29

SUBJECT: Interim progress report - RTCC program development - AS-258(!) Ground Support Simulations Computer [GSEC] programs

I haven't gone very far into the AS-258(!) GSSC review yet. However, some things are beginning to crystallize. This memo is to list some of the conclusions I have tentatively reached. I would be very much interested in your comments the next time we get together.

- 1. As you know, four modes of operation were being provided in the GSSC, each of which requires a complex computer program. They are:
 - a) GSSC by itself, providing complete CSM and LM models
 - b) GSSC operating with the Apollo Mission Simulator [AMS], and providing the LM model
 - c) GSSC operating with the LM Mission Simulator [LMS], and providing the CSM model
 - d) GSSC operating with both the AMS and the LMS

It seems to me that modes (a) and (d) are needed for obvious reasons. However, if it saves effort, I would recommend deleting mode (c) and reducing mode (b) such that the GSSC can operate with the AMS only for mission phases without a free flying, powered up IM. That is, I see no occasion for simulating a LM active mission phase in conjunction with the AMS but without the IMS also operating.

- 2. For the mode in which the GSSC operates without either the AMS or the LMS, I would cut back modeling of the spacecraft Guidance, Navigation and Control Systems [GNC] in both the CSM and LM to provide only realistic launch and in-orbit maneuver capability. I would delete all parts strongly involving the astronaut, such as <u>choosed</u> rendezvous activity and reentry. This does not mean that realistic rendezvous and reentry simulations could not be carried on.
 - a) Rendezvous simulations would be performed assuming the ground [MCC-H] is the prime source of maneuver targeting which would be carried out by the spacecraft using the External AV guidance maneuver mode. That is, there would be no onboard processing of observations or state vectors to obtain maneuver requirements.
 - b) I would "shut off" the GSSC after the spacecraft reaches the entry interface, thereby eliminating the need for modeling any

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

spacecraft serodynamics, command module RCS activity, GRC, etc., associated exclusively with entry. Incidentally, both the systems and trajectory flight controllers agree that this is not unreasonable.

The advantage of this is obvious. The GNC is the most complex system to model and the last to be defined (with the possible exception of spacecraft aerodynamics:). Deletions of this type substantially reduce the work and help avoid late checkout and delivery of the GSSC due to lack of definition. And I don't think it reduces quality of the training significantly. (I have documented my views in this area more completely and specifically in the attached appendix).

- 3. All simulation of AGS computer programs should be dropped with the possible exception of some of its telemetry downlink (that which is conveniently available already). That is, AGS controlled maneuvers can be simulated using the GSSC PNGS if necessary. There is no need to model that system, that I can see.
- 4. I see no need to simulate the launch phase of the (old) AS-208 Saturn with a powered down LM since there is no flight controller action required or systems evaluations to be gained during this phase. Deleting this would eliminate need to model the variable launch azimuth a substantial effort, I am told.

Although the above recommendations are not final, they're probably not far from it. Along with finishing off those areas, I expect to start looking into the following next:

- Simulation control display requirements.
- Need for special programming and simulated displays for the insertion ship flight dynamics officer.
- 3. Need for modeling an EVA astronaut.

4. Review the SCS mode of thrusting

Howard V. Tindall, Jr.

Attachment

Addressees: (See attached list)

Addressees:

YA/C. C. Kraft, Jr. FA/S. A. Sjoberg FC/J. D. Hodge FC3/A. D. Aldrich FC5/G. S. Lunney FC6/H. G. Miller FC6/R. H. Koos FS/L. C. Dunseith FS2/J. A. Miller FS2/P. Segota FS5/R. O. Robles

FM: HWTindall: cm

- 1. All simulation of AGS computer programs should be dropped with the possible exception of some of its telemetry downlink (that which is conveniently available already). That is, AGS controlled maneuvers can be simulated using the GSSC PNGS if necessary. There is no need to model that system that I can see.
- 2. All state vectors, REFSMMAT's and targeting for maneuvers must come from the MCC-H (Mission Program) either by uplink or voice. This data should all be input to the GSSC in the most convenient way with no attempt at simulating the prethrust programs.
- 3. Offhand, I see no need for simulating spacecraft attitude except during maneuvers (if even that is necessary). It seems to me attitude changes can be made (for maneuver initialization) instantaneously.
- 4. By the same token, platform realignment should be carried out instantaneously based on the ground supplied REFSMMAT.
- 5. GSSC simulation can be stopped following execution of the retrofire maneuver except to continue state vector updating for tracking and telemetry. Of course, if retrofire is unsuccessful the simulation should continue on in orbit. The point is, there is no need to simulate the separation maneuver and attitude changes (unless the AS-501 simulation is adequate for this). All reentry business should be deleted digital autopilot, guidance, RCSSthruster, aerodynamics, spacecraft sequences, etc. (This also applies to launch aborts).
- 6. All rendezvous targeting should be deleted, trajectory and telemetry to be carried out in same way as all other maneuvers. The single exception to this is to supply LM rendezvous radar range and range rate on the LGC downlink (no angles, no optics).
- 7. No spacecraft state vector updating (i.e., navigation) will be carried out using optics, spacecraft radar, etc. This had not been planned anyway. Of course, Average g integration is needed during maneuvers which does update the state vector.
- 8. Launch monitoring should be modeled for the AGC downlink including DSKY displays (these to be restricted to the nominal, standard format not the entire pilot choice). None of the computations associated with crew monitoring of the launch vehicle should be included, such as Saturn polynomials, etc. That is, downlink should be constrained to be only those quantities used for the insertion GO-NO GO decision and subsequent action.
- 9. Standard coast-phase downlink should be modeled at least to the extent that the data is easily available and useful. Things like "CDU desired" could be omitted since spacecraft attitude means nothing.
- 10. I guess there's no way of avoiding relatively complete modeling of the propulsion systems and associated guidance for SPE, DPS, APS, RCS maneuvers including attitude control. This is needed for realistic telemetry when the maneuvers occur over ground stations and realistic trajectory data when the burns are very long and over a site. Furthermore, I suppose

modeling of these systems may be pretty complete already (carried over from AS-501 and 206). Care should be taken not to redo the DAP if the Block I does the control job.

11. Obviously, if other parts of the GMC modeling have been completed, consideration should be given to including them. But this should not be automatic approval since maintenance is required which must be traded off against value to the training.

AGC/LGC Program Modeling Requirements Summary

Program	Loc	CHC
. POO . ,	Model #	Model #
PO1	Model *	Model #
P02	Delete	N/R
P03	•	n/R
PO 4	•	Delete
P05 & 06	n/r	Delete
P 07		N/R
Pli	•	Model
P20	Delete (except RR rr)	Delete
P?1	N/R	N/R
PS 2	•	N/R
P23	•	N/R
P25	Delete	• • • • • • • • • • • • • • • • • • • •
P26	•	N/R
P27	Model #	Model *
P30	Model *	Model #
P32	Delete	
P33	Delete	•
P34	Delete	Delete
P35	Delete	Delete
P36	Delete	Delete
P40	Model .	Model .
P41	Model	Model
P42	Model .	
Pi7	n/R	Model (for BCS1)11
P51	Model *	Model *
P52	Delete	Delete
P61 P62	•	Delete) Unless carried
P63	•	Delete over intact
P64		Delete) from AS-501.
P67	•	Delete
rol	•	Delete

^{*} MED and limited downlink only.

Following uplink command, formats should be recognized by the LGC and CNC models:

. /		<u> GC</u>	<u>rac</u>
CSN state w	ector		
IM state yes	ctor	3	2
External Ay	targeting	*	- -
REFSION?		. 🗷 🔻	2
DU A		* *	
DU B	mal AV tergeting	*	*
Time increme		X	
Liftoff time			

PM: HWTindall:cm April 3, 1967

معملا مايعا سر

No : Bill Tindall

SUBJECT: IM S-band antenna boresight change

Regarding your memo on the same subject (67-FM1-28), I agree that there is no problem in changing the S-band antenna-mount as far as the software is concerned. It only means substituting new equations in place of the old ones. However, I am not sure who is going to provide us the information concerning the transformation between the S-band gimbal system and the navigation base when and if this change is made. In other words, someone is going to have to pulse us in order that we can put the proper mathematical equations in the IGC.

Tra Gibson

UNITED STATES GOVERNMENT

Memorandum

: PA/Technical Assistant for Apollo

FROM : YM/Deputy Chief, Mission Flaming & Analysis Division

susject: IM 8-band autenna boresight change presents no LCC problem

This memo is in confirmation of our telephone conversation March 30, 1967 regarding IM 8-bend antenna acquisition. As you are aware, some months ago we reinstated to MIT the requirement for providing DEKY displays of pointing angles compatible with the astronaut's S-band antenna controls to assist him in acquiring the NEFF while in lumar orbit. (Actually, the pointing angles are those which, if utilized, cause the antenna to be pointed toward the center of the earth).

During our chat, I gave you assurance that the contemplated change in the alignment of the S-band antenna boresight would not seriously perturb the formulation of this LGC processor. Subsequent checking has reaffirmed that, so I say to you - "have at it".

> Original Signed By: Howard W. Tindan Jr.

Howard V. Tindall, Jr.

FE5/T. F. Gibson, Jr. 785/P. J. Stull

JN: EVT: CR

47 1942 SEPARE No. 1946 MI COD 104-11.5

UNITED STATES GOVERNMENT

${\it Memorandum}$

See list

IN/Deputy Chief, Mission Planning & Analysis Division

Current plans for downlink of IH radar data

There have been so many questions asked about what rendezvous and landing radar data will be on the LGC downlink, I asked Paul Stull to fill out the attached table which, as you see, he has done. He has greatly emphasized that this whole business is still ill-defined and, therefore, the numbers given must be considered preliminary. In spite of that, I felt it desirable to circulate this around - if only to arouse interest and comments in hopes that it might speed up that definition. We will update and recirculate this thing whenever it seems appropriate.

The lists are for the lunar landing IM program (formerly designated AS-504 LM). This reflects our intention of only producing a single program for all manned LM flights, although I suppose it might be necessary to modify the downlist somewhat to satisfy special postflight analysis requirements on the early flights.

Addressees:

EG/R. G. Chilton

EG/D. C. Cheatham

EG43/R. E. Levis

EG43/M. Kayton

EG43/C. F. Wasson

PA/W. A. Lee

PD4/A. Cohen

FA/C. C. Kraft, Jr.

FA/S. A. Sjoberg

FA/R. G. Rone

FC/J. D. Hodge

FC2/E. F. Kranz

FC2/J. W. Roach FC3/A. D. Aldrich

FC4/M. F. Brooks

FC4/J. E. Hannigan

FM: HWT: cm

PC5/G. B. Lunney

FC5/C. E. Charlesworth

FC5/P. C. Shaffer

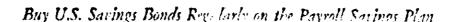
PC5/C. B. Parker

FC5/J. S. Llewellyn

FS5/J. C. Stokes, Jr.

FS5/T. F. Gibson, Jr.

FS5/P. J. Stull


FM/J. P. Mayer

PM/C. R. Huss

FM/M. V. Jenkins

FMG3/J. P. Bryant

FM/Branch Chiefs

										12.0							
Λ∨ ತಾಲ≇ಉಪ ರಾ																	1
Aulgald Talement and toler if the		,,					¢+	+,7		. ;	,	1	ာ	Ç.		Ì	
relative personal alternative of										,							t
distancement injuce (III) beckup						\vdash	-				0		_				1
(X30) X41 (Z2			Н			-				0;	_						
(M30) Idl 7/d	 		-		-	-		-	-	0				_			
(XSO) HOD ELA		-		-				-			-			-	_	_	
PYZ CSI (CSM)						-			-	٥	-		_			-	
	A	 	 	Щ				 -		2					_		
PTO A ROLL								<u></u>	L.			_	<u> </u>	0			
STO DIS ALOPE		_						_	<u> </u>	Ц				으			' اسارا
(Immost) Juspins Lea			į Ņ		L									_	ļ	L	1 :
(COM) WILDING & T			β,										<u> </u>	Ĺ.			
(oshy) quibant & s			, Q														
deported by barrees	Ţ		A													1	Ĺ
galdang galdo d fire			<u> </u>														Π,
DOT NOT MEDITAGE		0				-			_								-
sail gaibaal unau bate berg the	1	<u> </u>		-	-				1-	Н			<u> </u>	 -	┪		- ',
azith danual mait via F. T.		H			-	-	-	-	-	Н		\vdash	├	-	-		F
the large Surface Alica (Backup)		-			0			-			-	_		-	 	<u> </u>	 -
			_		2			<u> </u>	}	-	-	_	-	 	-		 , -
P. Lame Durface Align (Normal)					C	<u> </u>		<u> </u>	1_					_	<u> </u>	ļ	4-4
ngliant int/Ati : (*)	0		0		Ĺ						0	 - -	_		L		
nollanianeted nollanneling 1941 the	ာ				Ĭ						C		r 		Ĺ		
aossuch sames for	0				i				Ţ						0		
. Sord Januar Fres.			_						1			3	3				
PAT HCB Thinks Prog.				-	_	_	0	0	_		-	0	0	-	_		+
Agort James Bid Carl	a	0			-	-	Ť	÷	├	-	0	0	c			-	+-
S.O. JA KUONAGE		<u> </u>	,		ļ				├		2		_	-	-	13	+
		-					I		ļ	-		1	K	-			1-1
saurasen 1997 - 194			_				-	*	↓			9	-		<u> </u>		-
genryand id: wid	<u> </u>			_	_		-	_	<u> </u>			0	_	L_	L_		+-
इंडे CDH स्वयंत्रकार					_		•	<u> </u>	_			0					<u> </u>
S COL Prechaust							•					0			Ĺ		Li
3:0 External AV Prethrust								•			0		0			0	
Se Professed Tracking Attitude	 	0			-		c	C	9	0		_	_				1
N. P. P. Lunar Surface marketion		0		-	-			-	-			-	-		_	 -	1
notheristed freck becervainetion	0	0	-		-		0	-	 	0		-	-	-	٠	_	+-
NO Rendervous Bevienston		Ĭ		-		_	Ť	-		0			-	 -	-		+-1
***************************************	10	-	-		-		ř	10	-	-	_	-	-	┡	-	-	
old Leavek	 	_					으	<u> </u>	_	_		0	L .				
PLS Fourred Ascent Buidence					_	•	_					_	L	_			
(197) sail dannal bestelbord 119	L_				0				_								1
PLO Predicted Launch Time (CPP)					0			Γ	Γ					_			
\$7 45 98441.43 2.08	-												_	_			1
ich ling benna Donu	سا دعبن	-		0	 	-	-	-	 - -		ę.	-	-	 -	<u> </u>	170	+-4
dmana १०१ हेल	 -	-		<u> </u>	-	-			-	-		_	-	-	-		
aottastiatturi soa cor	-	-	-	-	•	ļ	-	-	 		0		-	-	 -	<u> </u>	
		ļ	0	_	c	ļ.,,	ြ		-		٠,	ļ		-	-	<u> </u>	
	3	.			-		-			_	H		 	_	<u> </u>	3	.
१०० १७८ १ वर्गरम्	0	5	_	0	١.,	-	<u> </u>	_	L.		_		_				السلا
								1				겉	0	1	Ì	ł	1 1
> /	I			•			Ę.	3				100	7	! !	l	l	1
2 /	1		S no case				8	3	13	10	3	2	٠		Ì		1 1
	1		2			•	7	ي	Æ	3	£	55	Ä	ł		l	
8 -	1	1	7.		1		14	Ą	8	႘	=	103-CACH)	ဗ္ဗ		1	₁₄ _	11
 Z /	12		3	_	1		1	3	1	7	F 1	Ū	F	Ë	l	ا في ا	1 :
 	18	1.4	f	8	į,	5	Active-Self Cont)	A .t.ve-Ext Calc)	Ų	3			=	Atort	1	Selling Personal	
LOC PROGRAMS	1	Š	,	4	r	۵.	<	. 1	-	*	10	1	1		ł		1
] 5 🗲 🖫	1	42	1:		Į į	F	3	3	18	8	3	125	3	15	1	(doubles of 1	1 :
	=	1	14	ž	13	ပ္ပ			1.		<u></u>		2	È		175	; !
	1	ě	13	1	1	4	18	18	₹	8	1	Orbit Atore	ă	12	ř.	4 3	1 1
PELM	Lucar Orbit (Fre DOI)	DOI & Descent Const	Perered Lumer London	Liner Surface Phose	Lunky Prelaunch Plass	Powered Aucent Phase	Represions	K.udezvous	Rendezvous (CSM Act-LOC Passive)	Rendeavous (CSM Act-LOC Cale)	Transcarth Inject (IEI) Backup	6	Dese Orbit Abort (PENCS-Ext Cale)	Potenet Lanting	ACS Aborts	Sorts fr. 3	
	1 3	H	Ş	ā	3	3	Š	ğ	Įį	ž	ğ	28.80	Ų,	į	20	1 5 E	1:
PRELIMINARY	13	3	[2	,	[3]	3	#	×	#	à	E	ä	å	1		130	
/ <u>a:</u> ·	اند	ાં	۸۰.		.:	ö	-	တ	5	o	1.	2	2		J.	نا	
								t -				1	1 -1		t . :		

	AV 1-0-3-3-1-1-1												_						
	स्तरीय क्यांन्याचार अस्तर स्वर्थ । १५०० व्य	j			_	-	}			0					. 0			-	
. •1	angong (192) torint man and	L	-	-	-	<u> </u>	-	<u> </u>	<u>.</u>			<u> </u>		- -		<u> </u>			
	(Kita) işir Çelkini de oğ		-				<u> </u>				-	_				·	·		
	(800)	 -	.	-	-	-	-	-	-		-			<u></u>		• -	Be airpines -		
.*	(KD) 100 /										-			 -					
:	क्षात्र ५ स्था है। इसर १४ स्था है।		<u>.</u>	_	!									1		_			r.
1 d	(frank) madel		 	0	-	-		-	-				-		÷			 	<u>}</u>
٠ و و و	(CON) = 2,580 (F)			0										1		_		-	
at out	#aparggA รูการเลาได้คือ (obeA) กรโดยนำ		- -	0	Ļ	<u> </u>	-	_	-	-				-	<u> </u>			<u> </u>	Ë
Cross M	Salkand make days			0		-		-					-	-			<u> </u>	- 1	
1	ealf nathmal man, being their colling requesting the		<u>c</u>	-										ļ		_			
Land: my)	matta thank that via T is	£	 -		<u> </u>	-	-	-	-		-				-	-		-	
	Comment of the property of the			-		3										-		+ 	•
Lumr in the	and the second and th		-			0			_			-		-	-	_		-	Ė
42	goldenterested noticedantito the fire	<u></u>	*	1	<u></u>	ļ	-	-	-			3		-	 	 -	!		<u>.</u>
upfated.	dottand darage for												_			9			
3 3	Aport Javairi 1984 An			-		L.,	_	_	_				_	_	-			-	i.
1=	ंडिया ३ गामच्ये अहः स		5	_	-	-	-	0	0			5	o C	-			3		~ *
da ta	ELECTION AUTOTABLE							ī	•				7	3.				**** '	
77 6	१०००मानुस्य स्टास्त				-	-	_	1 1	-	Щ			, . , .	_					ř
~ 4	अन्य इत्या इत्याचन							-										-	
Computer !	Sauratawa VA Ingra or a life sauratawa Ing. 1 et			i — i	_			**					P4				3	3	Ė
Consti	shudidad galdoerf berreieri 200		0						-1	-	1	Ā			•			φ−−- • ↓	
7	nollanianassi spari an 10 13 nollanianassi spari		1										_						
6.3	moleculate appropriate to se	0	 		-			10	7		0 1	-	-					-	
3 2	प्राप्त अस्त अस्त							0					ن ا						
eross out and are the ra	(147) with Honaul besolve of 1/4 nonabled lawsek two of 1/4	-				6	£		-		-	_						♣— ; ♣— ;	i
	P.O. Proffiched Launch Time (CFF)																	1	
13	क्षति संकर्त के प्रति १८५ इन्ह्या हमार १८ १८म											_				!			s, :
	वित्रज्ञका ३०० हम	0	-			C	-			-	-	3					3	· •	•
	antenalimiteral Statute			0		Δ		<u>-</u>											
O A S	Salter our con-	3	 -	-	٥		_	ا هسست. ه			_				······ i		3		,
Endar (Acadezvas, tenden) Values listed											ĺ							•	
•	œ /			\$.	ĺ		1	0	-1			3	င်	6	ĺ	ļ	,	,	
	4			*	1		ĺ	3				4	100 a 100		. !		,	i .	
	N I W	_		*	i	:		7, 23-27	* **	13	•	- 1	.,		5		÷ 75	:	
	—	8	181	<u>.</u> پر	0 27	£		*			1. 1	` J.	إخ	٤í	30.7	;		;	
	8 3/	ž	S	د،	6.		-	× ×	*	× × × × × × × × × × × × × × × × × × ×	× .	3	2		33	,			
	PRELYMINARY	Larer Orbit (Pre DOI)	Off & Descrat Const	Parered Linne L no	Party Bondage Parks	Land Fredama Pro	Powerd Arcent Pro	Senteavous (14			To leave te (CSX A	The resolution In sect	Orbit Austr	Pric Orbin Arana (1935)	rest lient by More		• •		
	/ W	É	Ä	7		£	7	200	#1.OMBBTO.FF	A saie average	ç	1	7	<u> </u>	-			•	
	2 2	10.25	*	1	23 7 7 7 7	1	1,1	.p. te.	10,7	i.ie.	AEG				7.	ا آ			
:	/ n:	• • •	٠.		•	± .	£	21				24 ° • E	. i. i	ن م					
-					, ;		. A.	. [) , و المربوب م	,		, ,	1		. :			i š.	
. žei is	. A Percenting a contract of the contract of t																		

UNITED STATES GOVERNMENT Efallul - Vaca of

Memorandum

: FA/Director of Flight Operations

DATE: MAR 2 8 195

.

: FM/Deputy Chief, Mission Flanning & Analysis Division

67-ML-26

susject: Progress Report - RTCC program development - Beview of AS-258(!) requirements

This lengthy memorandum deals with the recently completed review of AS-258(!) RTCC computer program requirements. I hasten to say, many other areas remain to be manimed in our effort to bring the over-all job supported by the MCC-H to within acceptable bounds and to assure economical RTCC usage. Of course, specific actions resulting from our efforts are covered in detail by other memors and directives, primarily those issued by the Flight Support Division to IBM. In addition, several analyses have been initiated within MPAD. My primary objective here is to summarise what we did and to document, for historical purposes, the rationale behind some of the decisions made.

Before I do that though, there is something else I'd like to point out. It became apparent to me that our review meetings had significant benefit aside from the main purpose of making sure the requirements were all justified. It turned out that there were several areas in which misunderstandings existed about what the flight controllers wanted and what the Flight Support people were attempting to provide. Resolution of these differences should be beneficial by improving the program and, in some cases, by significantly reducing the effort required. Another benefit was the recognition that certain associated things were not being done and action was immediately initiated. Probably the most significant of these was the lack of definition of the AGC telemetry downla. 'a by HIT which was severely impacting everyone's work - a problem we have taken steps to clear up. This also applies to renewed consideration of some displays provided to support certain flight controller functions but which are likely to be inadequate. Studies and analyses have been initiated to determine the inadequacy and, if necessary, to develop alternate proposals.

One other thing I probably chould point out is that some of the processing and display capability which was identified as unnecessary in the AS-258 program obviously also applies to some of the earlier development flights. As a result, although we do not intend to go through a detailed review of AS-501 and AS-206 programs which have proceeded too far along to be fruitful, AS-258 deletions which also apply to those development flights are being made.

As usual, the material will be covered separated into three categories - trajectory, command and telemetry.

Trajectory:

- 1. Spacecraft weights, c.g. location, moments of inertia and fuel remaining computations are being delated from the RTCC program since these tasks are carried out in parallel by the GEC flight controllers and their staff support personnel, whose computations are trusted more than those in the RTCC.
- 2. Maneuver line monitor displays were deleted. These displays were a carmyover from Genini, although they were not found to be particularly useful on that project. In fact, they apparently were never used for anything.
- 3. Double integration is a complex processor whit; was deleted following rather lengthy discussions and without flight controller concurrence. This capability was provided primarily for use in determining whether or not an SIVB state vector update should be made prior to the simulated TLI maneuver on AS-503. This was one of those capabilities which had been included in hopes it might help to do this difficult job. Bubsequently, investigation has shown that this special, complicated logic was unnecessary in the first place since the equivalent job can be done with the program as it remins defined today. Still, it is not clear that doing the job in the program is adequate and continuing analysis is underway.
- 4. Special logic was being provided to specify use of the y and z RCS thrusters for orbital managers. We caleted this capability for two reasons: one there is no capability being provided onboard the spacecraft for making guided maneuvers with those thrusters and, two the RTCC program as currently defined is already capable of supporting maneuvers of this type, although the procedures are somewhat inconvenient.
- 5. A composite display of all pertinent spacecraft REFSHMAT's has been deleted since that information is available on other displays.
- 6. The target closest approach display is a carryover from Gemini for use by the flight crew support people primarily to support their work on inflight experiments. This was another controversial deletion which was only made after our agreeing to re-evaluate their capability to get along using two new Apollo displays in the AS-258 system and reconsidering addition of this display if they encounter unacceptable difficulty. It is my impression the considerable new capability that the Experimental Acquisition Site display and the Star Sighting display have added should be adequate for hardling their requirements, although perhaps not in quite such a convenient way.
- 7. It was agreed to delete the keyhols acquisition display provided the name information was incorporated in the Next Station Contacts display. It was our argument that this would not only simplify the program, but would actually present this information in a more convenient format for the flight controllers. For those of you unfamiliar with the expression "keyhole", as I understand it, this refers to the loss of telemetry and command from some S-band sites when the spacecraft trajectory is such that the pointing angles

fall within certain areas in which tracking is not possible. When it is determined by the RTCC that loss of contact vill result, the Next Station Contact display will list that station as two or more separate contacts with all the associated information regarding duration of the experience, etc.

- 8. The H vs Typ, H vs V and Vg displays were all dropped as being unnecessary for Alight control.
- 9. Reentry footprint display was another controversial deletion which, incidentally, also applied to the AS-501 program. The Landing and Recovery Division people insist this display is used for making recovery force deployment decisions, but it appeared to me to be more of a "how goes it" display for impressing visiting dignitaries not directly involved in the operation. In its place we are slightly modifying the World Map display during the reentry phase to provide the same information. However, due to the reduced scale of the world map, this compromise does not completely satisfy those people most interested in retaining this display. Significant weight was given to the fact that projection plotboard displays of this type require by far the most extensive checkout and a significant reduction in effort would be achieved by this deletion.
- 10. Recovery Zone Summary plot was deleted since the information is readily symilable on other displays, such as the Recovery Zone Digital and Recovery Targeting Displays.
- 11. Revolution of the Ascending Node display is used by the flight crew support people and the recovery people for updating the crew and the recovery forces, respectively, with the information they need to lay out the ground tracks for the next six orbits. They had requested that the format of this display be changed somewhat, primarily to reduce the number of RTCC computer controller inputs required to support them. It was decided to put up with this not trivial inconvenience rather than to make this change now.
- 12. The General Purpose Maneuver progress and displays provide the flight dynamics people with a great deal of capability for determining maneuvers to satisfy a wide assortment of specific requirements. Although none of this processor will be eliminated, it is intended to restrict the flight verification testing to certain of the options based on a priority which has been established by the flight controllers.
- 13. The Launch Simulation Program was used to generate Launch "nominals" on Gemini based on the desired insertion vector computed in the ACR. This Gemini carryover was included in the Apollo 258(!) program but was found to be unnecessary and was deleted.
- 14. The line of sight thrusting for orbital maneuvers processor was deleted. This was provided for such things as making adjustments in perigee by maneuvers at apogee with the spacecraft aligned toward the horizon.
- 15. Probably the most controversial deletion in the trajectory area was a cutback in the number of options available to the retrofire officer for

computing his maneuver. This subject is treated in detail in another memo. Briefly, it is intended to eliminate the capability of the RTCC to iterate for retrofire attitude in addition to retrofire time. This deletion was made based on my judgment that it was unnecessarily accurate and complex for the job that meeted to be done.

Command:

Altogether, there are about 60 command formats which can be generated by the RTCC for the CNC, LAC and SLV for mission AS-258(!). We only deleted five and simplified one of the remaining, since all were either used frequently through out the mission or were required during time critical situations. Two of those deleted were digital autopilat initialization command formats: the one for the command module was deleted since it could be handled with relative case using the universal uplink (i.e., erasable memory uplink); the one for the LN was deleted since the design of the spacecraft computer program was such that ever if sent the command would be ignored. Two special command formats had been requested for the retrofire external LV maneuver. One of these was deleted and the other was simplified by the elimination of the digital autopilot initialization parameters. Finally, it is my impression that two of the four SLV switch selector update formats are to be deleted.

Telemetry:

Most of the changes in the telemetry system are of two basic types - deletion of 104 discrete display formats (out of about 450 requested), and elimination of some of the redundancy in the data recall capability which was to be provided. In addition, there is one outstanding item initiated by our review which, if resolved favorably, will result in a substantial reduction of work to be done. This is the elimination of all teletype telemetry data. I understand there is a good chance this will happen.

Pollowing is a summary of the changes brought about by our review:

- 1. High speed digital displays have been reduced from 94 to 62 formats!
- 2. High speed/low speed paging tabulation displays are one of the capabilities being provided for data recall. All together there were to have been 84 different parameter sets available in this display mode. This has been reduced to 75 sets which, at the rate of three display formats per set, eliminated 27 display formats.

Of equal or even greater significance than that is the reduction of the extent of data recall from 39 samples to a total of 15 samples. Based on the sample rate estimated by the flight controllers, this would have provided a data recall capability of about three revolutions rather than one. This extended recall capability required a large amount of extra computer logic, the elimination of which considerably reduces the total effort necessary to get the system running. My recommendation for this deletion was based on a feeling that the extended capability for instant recall really didn't do much good. A total mission data recall capability is provided by the RTCC Report Processor which prints out precisely the same information offline in a much more readable format. Of course, this introduces a 20 to 30 minute delay in obtaining the data as opposed to instant recall, but that doesn't seem unreasonable considering the way it will be used. The point is, in actual practice, it seems to me it will be necessary to rely on the offline processing to carry out this function anyway. Obviously, if this turns out not to be the case, further consideration should be given to providing extended paging - probably for a longer term than two extra revolutions.

- 3. System plots have been reduced from 37 to 34 formats. These plots are set up to cover time spans of 200 seconds or 10 minutes. An effort was made to eliminate one or the other of these durations, but this was impossible due to their rather substantial justification.
- the Gemini system, even though it was not found to be particularly useful to the "Systems" Flight Controllers. (It should be noted that some Flight Directors use them for handing over control from one shift to the next). Trend plots of all parameters stored within the RTCC were out of the question, and as a result only a limited number (37 formats in all) were to be provided. It has been decided to eliminate all of these with the understanding that this job will have to be performed by hand plotting if necessary. It was apparent that hand plotting of large even requiring special attention would have been done anyway since the quality of the trend plots on the TV screen is not adequate for detailed analysis.
- 5. There is a catchall category termed "special displays" which we reduced from 14 to 9 formats.
- 6. Playback/dump displays. The capability to call up displays driven by real time data and playback data simultaneously was requested and is being provided. In some instances, the flight controllers have requested different display formats for the playback data as opposed to the real time data resulting in an over-all increase in the number of display formats required. Consideration was given to making them all the same, but this proved to be impractical at this late date.
- 7. Limit sensing has been provided on two levels, but on closer examination it was found that providing the secondary level was of little value since there were only a few instances in which it was to be used. As a result, this general flexibility is being deleted from the system and those special cases are being programmed individually.

Whew! That's about it! Long, but nothing particularly startling. Probably not as great a cut back as you hoped might be possible. I really don't think anyone lost anything needed very badly and would argue that most of the stuff we cut out should m't have been there, even if we didn't have a computer time shortage. That is, the cleams was probably worthwhile just for economical reasons.

Our next ventures are into the land of GESC simulation and a look at the additives going from this progress to AS-503(1).

Howard W. Madall, Jr.

cc:

CF32/J. B. Jones

FA/S. A. Sjoberg

FA/R. G. Rose

FC/J. D. Rodge

FC2/E. F. Kranz

FC3/A. D. Aldrick

FC4/M. F. Brooks

FC5/G. S. Lumey

FC6/H. G. Miller

FC7/R. A. Hoover

FL/J. B. Hammek

TL/V. E. Koons

FL/M. L. Windler

FL/H. E. Granger

FL/D. E. Stullken

FS/R. R. Clements

FS/L. C. Dunseith

FS2/J. M. Batterfield

FB2/J. A. Miller

FS3/H. R. Leech

FS4/J. A. Prere

FB5/J. C. Stores

FM/J. P. Mayer

FM/C. R. Russ

PM13/J. P. Bryant

FM3/C. R. Hicks

FM4/J. C. McPherson

FM5/M. P. Frank

PM5/R. B. Ermill

FM6/E. C. Lineberry

FM7/M. D. Cassetti

FM8/J. Funk

FM:HWT:cm

UNITED STATES GOVERNMENT

Memorandum

FM Assistant Unief

DATE: MAR # 7 1967

TM/Deputy Chief

67-FML-25

SUBJECT: Rone

This action item was given MIT by PCD. We stopped it.

Provide criteria for checking the "usability of guidance equations and the navigation vector". If practical, it would be desirable to fly a "hands off" mission, but it was recognized that for degradations in the state vector (or trajectory) it would eventually become necessary to update the time of a burn, its targeting, on both [plus perhaps a state vector].

But it needs to be done ... Will you get someone to do it? GPB, I guess -

FM13/J. P. Bryant

YM: HWT: CE

00000187

Memorandum

TO : See list

DATE: MAR 24 1997

FROM : FM/Deputy Chief, Mission Planning & Analysis Division 67-FM1-24

sumject: In which is described the Apollo spacecraft computer programs currently being developed

It is possible to take advantage of the stretchout of the Apollo ilight schedule in the manner in which we develop the spacecraft computer programs at MIT. Although the flight schedules have not been fixed, it is evident that certain things can be done which will not only improve the quality and capability of the flight: programs but should reduce the intensity of effort required of MIT to get them ready on time. It is the purpose of this memorandum to describe what we are planning to do in this area.

Within the month, the unmanned earth orbital IM program [formerly known as AS-206] should be released by MIT. After that, all program development work will be directly applicable to the main line lunar landing mission programs. As has been noted previously, only two spacecraft computer programs are operationally needed - one designed to support the needs of the command module on the lunar landing mission [formerly known as AS-504] and the other for the LM on that same mission. [Recall, these programs can also support all earth orbital development flights]. Everyone wanted to fly all Flock II manned missions with these two programs, but it was evident about a year ago that the program development schedule [November 1967 release] was not consistent with the flight schedule for the earlier earth orbital development flights. As a result, we initiated development of two additional programs - one for the LM and one for the command module - for missions flown before the AS-504(!) programs were ready. They were formerly known, respectively, as AS-208 and AS-207 [later AS-205] and were scheduled for release in June of this year.

It now appears evident that the lunar landing LM program can be made available in time to support the first manned earth orbital LM mission, and as a result it should not be necessary for us to release a flight qualified LM program exclusively for that purpose. It's conceivable that these same remarks apply to the command module. However, in order to avoid taking the chance of pacing the Apollo 2 flight, it is our current intention to continue development of the command module program almost as it had been defined for AS-207 [later AS-205]. Certain modifications are contemplated which will result in its release occurring somewhat later than originally planned.

Thus, it is our current intention to release three flight qualified programs for rope manufacture - an earth orbital mission command module program, a lunar landing mission command module program and a lunar landing mission IM program. I would like to discuss each of these three individually in a little more depth.

Earth Orbital Mission Command Mcdule Program:

Since this program will have the capability of supporting all earth orbital main line Apollo missions that have ever been discursed, its release, about the first of August, should effectively get the schedule completely off our backs for command module programs. Actually, I really don't expect that this program will be used for more than the first manned mission - Apollo 2 - since the lunar landing mission command module program will probably be available in time to support all of the rest of the flights. But, the point is, it could be used if necessary. Desirable modifications to the program, the implementation of which we were previously delaying until the lunar landing mission program, will probably be incorporated in this one. Final decision on these awaits MIT's evaluation of their impact. Since it will no longer be necessary to deliver a LM program in the same time frame as this command module program, MIT's overall task should be somewhat easier to accomplish and the command module program should be of a higher quality.

In addition to supporting the Apollo 2 mission and, if necessary, any other earth orbital missions, this program has two other major uses. It will serve as a high quality component in the flight crew training facilities prior to release of the entire lumar landing mission program. It will also serve as an ideal point of departure for the development of the lunar landing mission program and the earth orbital AAP mission programs. The point here is that this program is just about an ideal subset of both of those more complex but entirely different programs and, having been carried through complete flight verification testing, will serve as an excellent foundation on which to add the unique programs required for those more sophisticated missions.

Lunar Landing Mission Command Module Program:

This program, which has lowest priority of the three, will probably be released about the first of the year. Earlier delivery may be possible if we twist MIT's tail, but I really see no point in it. However, it should be used for mission support as soon as it can be conveniently phased in, taking into account flight crew training as well as flight schedule. This might even be Apollo 2, of course.

What it consists of should not be affected by the mission reshuffling now going on.

Lunar Landing Mission IN Program:

Definition of this program should also be unaffected by current events, nor should its release schedule be much different; i.e., it should still be possible to complete it some time in Movember or December if such an early release turns out to be necessary. Probably the most significant new factor influencing the development of this program is associated with flight crew training. Whereas a flight qualified IM program for earth orbital missions was scheduled for release in June which could have been used for extensive flight crew training. This is no longer planned, but the flight training requirement still exists. Accordingly, members of the Flight Software Branch are conferring with flight crew operations and program office personnel concerned with this activity in an effort to pin down flight crew training requirements. Specifically, we are trying to establish a schedule defining when certain components of the LM lunar landing program need to be operational. Based on this schedule, we shall negotiate an over-all development plan with MIT with emphasis placed on meeting this crew training schedule. Some slip in the final delivery date might be necessary for MIT to comply with this new program development constraint, provided that is acceptable from a flight schedule standpoint.

I guess I should point out that I really don't expect the development of these programs to be carried out much differently than had previously been planned. But slipping the flight schedule does provide some room to maneuver and has made it unnecessary to perform flight verification testing on a LM program exclusively for use on earth orbital missions.

To summarize the over-all situation regarding spacecraft computer program development, it is my feeling that no major problem exists any longer in this area. MIT has an organization and facilities geared up to handle the workload in an orderly, professional, unharried manner. High quality flight programs should be available well shead of their need. Revised program development plans are being prepared to provide you definitive milestones which we'll pass on as soon as they are available.

Your comments shall be received with relish.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Addressees: CA/D. K. Slayton CB/A. B. Shepard CB/W. M. Schirra CM/J. A. McDivitt CB/T. P. Stafford CP/W. J. North CY/C. H. Woodling CY/D. F. Grime CF/P. Eremer (2) CF/C. C. Thomas CF/J. B. Jones EG/R. G. Chilton EG/D. C. Cheatham EG23/K. J. Cox EG25/T. V. Chambers EG26/P. E. Ebersole EG27/D. W. Gilbert EG42/B. Reina EG43/R. B. Levis EG43/M. Kayton EG43/C. F. Wasson ET71/T. R. Kloves EX/N. G. Foster KA/R. F. Thompson KM/W. H. Hamby PA/J. F. Shea PA/W. A. Lee PA/R. R. Carley PD/R. W. Williams PD4/A. Cohen PM/O. E. Maynard PM2/C. H. Perrine PM2/P. J. Ward PE7/D. T. Lockard PA/C. C. Kraft, Jr. FA/S. A. Sjoberg FA/R. G. Rose FC/J. D. Hodge PC2/E. F. Xranz FC2/J. W. Roach FC3/A. D. Aldrich FC4/M. F. Brooks

· FM:HWT:cm

PCh/R. L. Carlton

FC5/G. 8. Lunney FC5/C. E. Charlesworth FC5/P. C. Shaffer PC5/J. C. Bostick PC5/H. D. Reed FC5/J. E. I'Anson YL/J. B. Basmack FS/L. C. Dunseith 785/J. C. Stokes, Jr. FS5/T. F. Gibson, Jr. F65/R. O. Nobles 785/P. J. Stull PB5/L. A. Fry FM/J. P. Mayer PM/C. R. Huss IN/N. V. Jenkins FM12/J. F. Dalby FMG3/J. P. Bryant MCA/R. P. Parten MWBranch Chiefs 17/8. P. Mann FIG3/J. R. Gurley

UNITED STATES GOVERNMENT

Memorandum

ro : See list

Date: Mar 2 3 1967

FROM : FM/Deputy Chief, Mission Planning and

67-INIL-23

Analysis Division

SUBJECT: Summary of what needs to be done to develop flight confidence in the spacecraft computer programs

There has been growing concern in many quarters regarding the adequacy and formality of the final verification testing of the Apollo spacecraft computer program and its interfaces with other spacecraft systems. This concern led to a meeting on March 21st to decide whether everything was really okay and whether something should be done about it. Attendees to this meeting were Don Cheatham, Asron Coben, Cline Frasier, Bob Gardiner, Tom Gibson, Myron Kayton, Stan Mann, Tom Price and Bill Tindall of MSC and John Norton and Mike Richter of TRW.

Our attention was primarily focused on the first LM program [formerly known as AS-206] although it was not restricted to that one. Indeed, this group felt that the situation was not satisfactory; that formal flight verification testing was not being carried out in the controlled, thorough manner necessary to develop flight confidence; that documentation of the test plans and test results was not even adequate to really understand what had been done.

One conclusion, obvious from the start, was that the AS-206 flight schedule, or whatever the first IM mission is to be called, does not permit delay of rope manufacture until that testing and documentation which would ordinarily be considered necessary prior to rope manufacture could be completed. In this instance, they must be carried out in parallel. If results of this effort are such that changes in the program are considered mandatory, ropes will have to be remanufactured and a slip in the flight schedule may occur. Alternately, flaws in the program revealed in this process could result in revision in the manner in which the mission will be flown; e.g., changes could be made in the erasable load, maneuver targeting, command update from the ground, mission rules, flight limits, etc.

Specific action items resulting from this rump session are as follows:

1. It was agreed that only MSC is in a position to integrate the over-all system. It is our proposal that this be carried out by the Guidance Soft-ware Control Panel [GSCP], and the Chairman of that panel accepted as an action item the task of developing plans and an organization to carry out the MSC integration function. It was emphasized that this is a systems

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

integration task not restricted to spacecraft computer programming but also covering all interfaces with the t component. This task includes coordinating the activity of all associated organizations and making sure that nothing falls down a crack.

- 2. Each individual organisation involved [i.e., MIT, GARC, 1RW, MSC, etc.] shall be called upon to document their inderstanding of the current situation regarding AS-205(!) flight verification for the GSCP. That is, in order to determine logically what must be done, it is necessary that the GSCP have a thorough and up-to-date knowledge of what has been done.
- 3. The Flight Software Branch shall direct MIT to deliver AS-206(!) test plans and test results, including analyses, of a quality at least as good as shall be available for AS-258, if you know what that means. This shall include complete documentation of the Level 4 and Level 5 tests and results already accomplished, as well as a complete verification plan on which acceptance of the final program assembly shall be based. In addition to this, MIT shall prepare a list of all program components which have not been unit tested [Level 2] and will make sure that unit testing which has been performed is completely documented.
- 4. Since it is anticipated that three of the six rope modules to be used on the AS-206(!) mission will have been manufactured from one program assembly and the other three from a later, different assembly, MIT shall be directed to prepare a verification plan documenting the manner in which they intend to verify compatibility of the various rope modules with each other.
- 5. It is intended that the so-called Bit-by-Bit simulation facility at MSC is to play a formal part in the program verifications process. Effort on readying that facility is currently divided between work on the programs required for the AS-206(!) program verification and on those for Apollo 2. Considering the flight schedule, as well as the fact that most of the former should apply to the latter, the Flight Software Branch will revise the priority to the Computation and Analysis Division and their Lockheed contractor such that the AS-206(!) work taken precedence in all respects.
- 6. Recognizing that certain aspects of the total systems verification task is beyond the capability of MIT to perform on their facilities, we have concluded that they must be augmented by including other organizations in this process. It is our proposal that ASPO direct GAEC to prepare a verification plan to check out all software/hardware interfaces to casure compatibility. It is recognized that this task and the netual carrying out of the testing itself on the GAMU facilities is beyond their current contractual obligation, which will make changes in that necessary.

It is obvious that items 1 and 6, above, are new. However, the need recognised equally obvious, and we feel that they should be adopted as a recognised way of doing business for all subsequent flights. Items 2, 4 and 5 are tasks unique for this particular mission in that we are attempting to correct a deficiency. Item 3 is also unique to A8-206(1) in that we must go back and do semething which should have been done much sooner but had been rationalized away in the press of the flight schedule, at well as a general atmosphere which prevailed previously. Formal test planning and documentation for all program development following A8-206(1) is already well under control.

It is anticipated that slippage in hardware delivery and flight dates will make it possible to carry out this work within a time period that will be acceptable for the development of flight confidence. Although the diversion of MIT effort to carry all this out could and, in fact, will likely impact MIT's delivery of other flight programs, it is anticipated that this, too, will be considered satisfactory.

Howard W. Mindall, Vr.

Addressees: TRW/J. L. Nowton TRW/M. Richter EG/D. C. Cheatham EG/R. A. Gerdiner EC43/M. Kayton EG44/C. W. Frasier PA/J. F. Ches. PA/W. At Lee PD/R. W. Williams: PD4/A. Cohen FA/C. C. Kraft, Jr. FA/S. A. Sjoberg FS/H. E. Clements FS/L. C. Dunseith FS5/T. F. Gibson, Jr. FS5/T. G. Price FM/J. P. Mayer FM/C. R. Huas FM13/J. P. Bryant TM7/S. P. Mann

FM: HWT: cm

UNITED STATES GOVERNMENT

Memorandum

(Cys weld to HWT - per SMS)

TO : FA/Director of Flight Operations

Date: Mar 8 0 1961

ROM : IN/Deputy Chief, Mission Flamming and Analysis Division

67-71CL-22

subject:

AS-258 RECU Betrofire Time Computation

One step taken in an attempt to alleviate the RTCC program development problem has been to make major reductions in the area of retrofire time computations. Since these deletions have an impact on the Retrofire Controller's capability and mode of operation, I felt it desirable to report these things in a memorandum devoted solely to that subject.

Retrofire time computations to be used when the guidance system is up and operating are done with precision, as are those for non-GAM reentries wherein there is time to make proper adjustments in the inputs to the RTCC program. However, I would like to emphasize from the start that in certain contingency situations - namely those reentries which must be performed on an emergency basis and without the guidance system - the retrofire time computation may be in error as a result of our having eliminated one of the modes for computing retrofire time. Recognizing that almost all cuts in the RTCC programs involve a calculated risk, this one seemed to be as reasonable as any to me. I base this opinion on the knowledge that there are many other equally large error sources contributing to the landing point dispersion for non-GAM emergency reentries. Also, it must be recognized that an error in the retrofire time computation does not affect our knowledge of where the spacecraft will ultimately land.

In order to understand the reductions that have been made in the retrofire time computations, it is necessary to describe in some detail the options which originally were to be available. These options are made up of any combination of the following elements, which I will describe individually:

1. Type of reentry, with 4 options - no change.

2. Attitude hold mode during retrofire, with 2 options - reduced to 1.

3. Choice of propulsion system, with 4 options - no change.

4. Choice of retrofire attitude iteration, with 3 options - reduced to 1.

5. Orientation of the spacecraft, with 4 options - changed, but only in the manner in which it is specified.

6. Manner in which the maneuver magnitude is to be specified, with

2 options - no change.

7. Real time adjustment of a number of other parameters - probably increased by one.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

There are four basic types of recatry for which we are able to compute the retrofire maneuver:

1. Retrofire only followed by guided reentry.

2. Retrofire preceded by a pre-retrofixe maneuver and followed by a guided reentry,

3. Retrofire only followed by ballistic reentry.
4. Retrofire preceded by a pre-retrofire maneuver and followed by ballistic reentry.

Since there is a reasonably high probability of having to carry out any of these four basic types of retrofire maneuvers, we haven't attempted to decrease this capability.

Attitude Hold Mode:

When making a guided retrofire maneuver, it is intended to hold inertial attitude. This is also the case when using the SPS engines in conjunction with the SCS control system. Movever, if the SPS, GAN and SCS have all failed, the procedure is to maintain orbit rate torquing during a long RCS maneuver, and this option was available to provide a more precise retrofire time computation in that instance. Considering the low probability of making this sort of maneuver, along with the large probable error associated with one of that type, it would seem unnecessary to prowide this extra precision in the computation of the retrofire time itself. Accordingly, all retrofire time computation will now only be based on the assumption that the attitude during the maneuver will be maintained inertially constant.

Choice of Propulsion Systems:

Retrofire time computations can be based on either using the SPS engines or the service module RCB. Two options are provided for the SPS pode, depending on whether 4-jet or 2-jet ullage is to be used. It is also possible to specify either 2-jet or 4-jet RCS retrofire, although it has been stated that a 2-jet RCS retrofire maneuver is not operationally feasible. If this option is considered unnecessary, some computer time could be saved by eliminating checkout of it.

It should be pointed out that retrofire time computations can also be carried out if the command module RCS propulsion system is to be used. However, this is done by manipulation of the input parameters and not through provision of special RTCC computer program logic.

Selection of Retrofire Attitude Iteration:

The original retrofire time program was designed to provide three basically different retrofire attitude options. In fact, it is the provision of these three options which contributed most to expanding this particular task out of reasonable bounds. It is the deletion of two of these which constitute the most substantial savings. The three options are as follows:

- 1. Retrofire attitude is selected external to the RTCC program and manually input to it. This was the mode used in Gemini where it was possible to change the retrofire attitude but the value was selected based on some logic external to the computer program, usually preclight. This retrofire attitude is referenced to the local spacecraft horizontal and the orbital plane at the time of retrofire initiation. The program then iterates for the retrofire time based on the assumption the retrofire maneuver will be executed in the attitude specified. It is this single option which we shall retain in the system, since it gives the greatest flexibility.
- 2. The second retrofire attitude iteration logic was introduced new for Apollo and, in fact, became the prime mode of operation. For some reason, it was felt necessary that the retrofire maneuver be made with a reference line on the spacecraft window aligned precisely with the earth's horizon at the time of retrofire initiation. Therefore, special computer logic was provided wherein the program would iterate not only for the retrofire time but also for the attitude to be used. As a result, it was not known what the spacecraft retrofire attitude would be until the final retrofire time computation was carried out.

It is understood that most non-G&M retrofire maneuvers will be carried out with the spacecraft orientation this option provides. However, considering the inaccuracies associated with a non-GAN retrofire and reentry, the small additional error incurred in the retrofire time computation itself seems acceptable. The error would result from using an attitude close to, but perhaps not precisely on, the visual horizon in the time-tofire computation. Of course, the maneuver would most likely be performed at the horizon attitude to within the crew's ability to hold it. It must be emphasized again that deletion of this mode is implicit acceptance of a somewhat inaccurate retrofire time computation, but with the understanding that the knowledge of what the crew will do is not jeopardized in any way. Further, it should be pointed out it is not at all difficult to determine the retrofire attitude referenced to the horizontal which would provide the visual horizon reference within whatever precision is required. That is, the only time the error will result is non-GAN retrofires occurring on an emergency, immediate basis.

3. For some reason, it was concluded that the attitude to be used during an RCS retrofire must be aligned along the velocity vector rather than horizontal, and the third special mode had been provided to compute this attitude in real time. First of all, the difference between the velocity vector and horizontal selden exceeds 2°, even for highly elliptic earth orbits. This is a rather trivial error even if it were not compensated for, as it could be quite easily. There was agreement that this mode could be deleted without harting anybody.

Orientation of the Spacecraft:

Provision had been made for computing retrofire maneuvers in any combination of heads-up or heads-down and posigrade or retrograde [can you believe posigrade?]. We have not reduced this capability, but it is my understanding that, in order to provide consistency with inorbit maneuvers, the spacecraft orientation will be specified by pitch, roll and yaw as opposed to those quantities moted above.

Maneuver Magnitude Control:

The amountaine of the manager may be specified either in terms of Δv or duration of burn.

Other Controls:

Just to be complete, I might list the other input parameters which control the retrofire time computation:

- 1. Revolution number, recovery area and landing point latitude and longitude.
- 2. Duration of the ullage burn.
- 3. Mominal reentry bank angle.
- 4. REFERENT is to be used to compute DEI girbal angles.
- 5. g level at which rolling is to be initiated for ballistic reentries.
- 6. The bank angle it is intended to hold between retrefire and that g

In summary, it seems to me that the retrofire time processor still provides all the flexibility and accuracy required to carry out our missions. Several limitations have been made which should considerably reduce the systems test time. As you can guess from the length of the various discussions given above, the only real area of contention had to do with how reasonable it was to provide special retrofire iteration modes beyond that available on Gemini. Agreement by the Flight Controllers on this matter was only

possible assuming acceptability of scernat erroneous retrofire time computations in the case of mon-CAR recepties performed on an energency basis.

Howard W. Findall, Jr.

CAMPAGE TO

PA/S. A. Sjoberg PC/J. D. Modge PC2/E. F. Erans PC5/G. S. Linney PC5/J. S. Lievellyn PL/J. S. Hammak PS/L. C. Dunseith PB/J. C. Stokes PS/J. P. Mayor PM/J. P. Mayor PM/J. P. Mayor

Mr. Eler ou

MG/C. R. Licks MG/M. P. Frank UNITED STATES GOVERNMEN

Memorandum

ro z-re/chier, Flight Control Biviston

DATES

race ! TW/Ch'uf, Mission Planning and Analysis Division

67-PM1-25

susject: Service Module RCB propellant remaining calculations in the CMC

In response to your memo dated January 13, same subject as above, we requested the Guidance and Control Division to barry out a study into the possibility of adding a CMC routine to compute MCS propellant consumed. The results of their study are detailed in the attached memo. As you can see, they have concluded that not only would such a computation be quite inaccurate but, "... the amount of data which would have to be handled is felt to be prohibitive." It is their recommendation that such a program not be considered for use in the CMC. On the other hand, if you still feel there is merit in this proposal, I suggest your people contact Guidance and Control Division personnel directly.

John P. M.vez

EG/R. G. Chilton
FA/C. C. Kraft, Jr.
FA/S. A. Sjoberg
PC35/G. D. Griffin
FB/H. N. Clements
FE5/T. F. Gibsen, Jr.

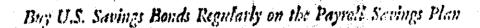
M: Buridell, Jr. ich

Memorandum

DATE: FED 5 3 190

to i See list

Gr.110-2


PROM ! JW/Deputy Chief, Mission Planning and Analysis Division

summer: Star/landmark havigation exercise preflight planning

A call from Mr. C. C. Kraft the other day drew my attention again to the apaceeraft guidance system navigation tests planned for the AS-503 mission. E had received indications that the planning for this excrecise was rather haphasard. Specifically, he recommended that MIT be brought into the mission planning as this time in order to incure their satisfaction, since they are probably as much or more concerned than any other organization in evaluating performance.

This memo lists a number of jobs which need to be done. Perhaps they should be coordinated and formalized by A280. Specifically:

- 1. The Mathematical Physics Branch, working with MIT through the Flight Software Branch, should establish precisely the mission planning requirements for carrying out the star/landmark and star/horizon observations during high altitude orbits such as planned for A3-503. These requirements should include the identification of stars and landmarks to be used and the lighting conditions which are necessary. Since it is currently planned to fly the AS-503 mission with the A8-278 programs, you are reminded that actual update of the state vector onboard the spacecraft may not be possible. As a result, some thought must be given as to how the postflight data processing shall be carried but. It would be disastrous if, as a result of lack of foresight, insufficient data were collected during the exercise, making it useless. Since there is a good possibility of carrying out this type of exercise after the A8-504 program has been completed, some thought should also be given to what modifications to the exercise would be called for in that event.
- people on the above tank, giving proper emphasis in the mission denign to the requirements for this excroise. They will certainly conflict with other mission constraints, and the compromises which will be necessary must ultimately be MAB's responsibility to identify and make.
- 3. I suppose it is up to the Mathematical Physics Preside to make sure that they and/or MIT have the proper programs propared to entry out the postflight analysis. This preparation, of course, includes provision of the capability of accepting the data as it will be provided to them effect the massion, as well as selection and formulation of program output formula

most suitable for analyzing the results. It is to be emphasized that we will be looking for answers relatively quickly, since I anticipate the missions will start to follow one another fairly rapidly by the time this exercise is carried out and little time will be available to modify the spacecraft computer programs if that is found to be necessary.

A task assignment, in the TRW format, should be prepared for transmittal to MIT for whatever work it is we feel they should do. For the thing, MIT should be requested to formally submit to us their postflight data requirements.

It seems to me the most important thing right now is to insure that the mission planning is compatible with the meeds of this exercise. Since the mission plans for the various Apollo missions are in such a state of flux, I would recommend that wherever possible the exercise be planned independent of the specific mission such that it could be inserted as a package into whatever mission, it is ultimately felt it should be included.

Howard W. Mindall, Jr.

Addresscest

PG23/K. J. Cox

FA/C. C. Kruft, Jr.

FA/S. A. Sjoberg

FA/R. G. Roso

FC/C. B. Parker

FS/L. C. Dunneith

FS5/T. P. Cibson

PS5/R. O. Nobles

FWJ. P. Mayor

FM/M. V. Jenkine

FM12/J. P. Dalby

FML2/D. J. Incerto

PM/J. C. McPherson

FM5/M. P. Frank

FM: HWT: _m

MA PRO 141 COM 101-11 A UNITED STATES GOVERNMENT

Memorandum

: Ph/Director of Flight Operations

: FM/Deputy Chief, Mission Finnsing and Analysis Division

67-201-19

sugger: Progress Report - RICC progress development reduction - Review of notation solution and the second transcriptor.

> On February 17th we held a meeting in our continuing effort to reduce the program development demands on the Real Time Computer Complex. In this instance, a group of FCD, FBB and MMAD people reviewed requested modifications to the AS-501 NTCC program in preparation for the AS-502 mission. I could briefly summarize the results by saying eight of the changes requested were not considered mandatory and were deleted. There were three items which seemed so important that a concerted effort will be made to add them into the AB-501 program for use on that flight as well as AS-502. There will be four modifications required in the telemetry and command systems which were unavoidable due to changes in the space vehicles themselves between AB-501 and AB-502. In fact, it's quite likely that these four will be the only differences in the A5-501 and the AS-502 programs.

- 1. The following new requirements were deleted:
 - (hp vs Vp) on X-X plotbourt. (Will be displayed elsewhere, if needed).
 - b) (y vs V) on projection plotboard. (Displayed elsewhere).
 - e) Use AGC low speed telemetry vector in orbit phase for trajectory updates. (Eigh speed vectors can be used and, if necessary, low speed can be used by a scenwhat aveneral procedure).
 - d) Add Residual Summary Dirrlay II. (Not needed).
 - e) Major modifications in the live plots of CEM SPS fuel and oxidiser remaining. (Not needed).
 - f) Addition of two summation computations for radiation surface dose and depth dose. (Not needed for flight control).
 - Display musber of events from the ACC on TV rather than on lights. (Not necessary).
 - h) RSDP GMILO command update. (Not needed).

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

- 2. It is our intention to add the following three items in the AS-501 program for support of both missions, if possible. Jim Stokes, is conjunction with IBM, intends to determine their impact on the schedule for releasing the AS-501 program and, assuming it is no more than about two or three weeks, it will be our recommendation to make them. As I understand it, the likelihood of launch schedule alignage is great enough that this should be acceptable.
 - a) (vs \) ... on projection plothoard. This capability is being added for a rather remote continuous situation which involves some chance of Flight Controller action causing the spacecraft to impact seaswhere is the United States. The Flight Dynamics people had requested that the latitude and longitude at 400,000 feet (the so-called entry interface) be predicted and displayed during large maneuvers. As I understand it, the SIVE must have failed and the SPS must not be under complete control for this display to be useful. However, the modifications requested were considerably simplified such that either the projection plotboard spotter or scriber would be used to display this predicted "impact" point on the standard 10 x 20 world map in place of present position. Since (# and k) are already routinely computed, this espability should not be particularly difficult to provide. The request to serios the monimal plot of these parameters was deleted.
 - b) The capability of initialising the RTCC program for the actual loaded propellant weights in the SIVE during the prelaunch countdown based on measurements made during the loading was added. Previously, the program assumed full tanks which introduced a considerable error of display of LOX and LH2 remaining.
 - c) The computation to compute He remaining in the SIVB is being completely redone. It will use a crypgenic type computation via the old ambient temperature type computation which introduced a considerable error in the determination of this critical parameter which is used in conjunction with a mission rule for determining whether or not the SIVB may be reignited.
- 3. There are four changes in the telemetry and command systems which do not apply to AS-501 but which are essential for AS-502 due to vehicle modifications.
 - a) The definition of the IU coordinate system will be changed which must be reflected in the RICC program.
 - b) The granularity and member of LYGG downlink parameters will be changed which influence the computations of GRR, The start, orbital mode word, etc. The Guidance Officer considers this

change mandatory if he is to make a reasonable decision as to whether or not to send a natigation update to the SIVB. He maintains that without this improvement his computations would be sufficiently in error that he would have no choice but to send one every time.

- c) The SLV time base update will be modified to make it a double precision output via single precision.
- d) A new command format, the SIV havigation update, will be added.

4. There is one orbital phase display requested by the Flight Dynamics people - namely, perigee height vs velocity - upon which we haven't made final resolution. The Flight Controllers maintain that the special character of the AS-502 maneuvers make the AS-501 displays inadequate. For example, a plot used to monitor one of the maneuvers goes completely off scale. On the other hand, if we're able to eliminate this request, the orbit phase could be made identical for the AS-501 and AS-502 missions. Our action on this item is for the Flight Controllers and MPAD people to determine if the other displays can support whatever job is to be done by the Flight Controllers adequately and also to determine if the requested display would be even adequate, since there is some question about that. Jim Stokes has assured us that if a decision is available by March 15th we should be able to add it without schedule impact.

I felt this was one of the best meetings yet. There was a true spirit of cooperation among all participants in trying to get the job done, and I felt that the compromises arrived at were really very good. The Flight Controllers freely abandoned their requirements where at all possible and the Flight Software people are making an extra effort to not only provide the capabilities identified as essential for AS-502, but where suitable will also make them available in the AS-501 system. The point is, I feel we have improved the product as well as significantly reducing the work which must be performed in getting it ready.

Howard W. Tindall, Jr.

co: (See list) UNITED STATES GOVERNMENT

Memorandum

TO See list

DATE: FEB # 7 196

Figure 1 TM/Deputy Chief, Mission Planning and

67-ma-18

Suspects Spacecraft Computer Program Development Bevaletter

We had a fruitfy; program development plan review meeting at MIT on February 15th. With one exception, everything seems to be moving along nicely row. In fact, such of our meeting was spent on non-technical matters - those associated with administrative management - not so time critical in so far as getting the logarism out of MIT, but extremely important when it comes to determining where the money is all going.

We requested MIT to propose at our next meeting how they intend to provide cost accounting for their work in the software area, something which is sadly inadequate at this time. Specifically, we are interested in their reporting on a regular basis the man loading and computer usage - broken down by mission and task. In addition, we have requested that they provide a travel summary on a monthly basis.

MIT was requested to propose how they will comply with our requirements for providing complete flow diagrams of the AS-258 and AS-504 programs, to be updated once a month. This form of socumentation has been sorely needed for a long time, and we are finally at a point where it should be possible to provide it without interfering with higher priority program development work. The fact is, a good deal of these programs are being flow charted already by NIT on an informal basis. Other flow charting has been done at MSC by Lockheed as part of their job on the Bit-by-Bit digital simulation here. MIT has been requested to determine the cost of this effort, which is unfortunately not covered by their current contracted but closely supervised by MIT personnel.

Another seemingly mundame topic of conversation regarded the need for naming the programs in some way other than with the number of the booster which might be used on the mission. It's getting impossible to converse clearly and the docume... It's going to be hopeless if we continue to use such numbers as 205 and 504 to identify the spacecraft computer programs. And it would be naive to assume that this juggling of boosters and missions will not continue. We will inform you of the new, more descriptive program names as soon as they have been selected.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

It was reported that the Hybrid facilities are coming along nicely and an schedule. Modifications and uprating of the old facility is almost complete and should be in position to provide operational support to both command module and IM program development within a sec th. The second facility is atill scheduled to be on the air about April Pools! Day.

The AS-278 programs (or whatever you call them) are reported to be on schedule, although BA Copps has found it necessary to beef up the man-power considerably to keep it that way. We discussed a number of relatively minor changes (MERD's) which interested parties are probably aware of. None have been approved having a significant impact on the delivery schedule as far as I know.

Incidentally, it's becoming more and more apparent that some sort of review will be needed regarding what is to be in the erasable memory of the AB-258 program. MIT will signify when it will be most profitable to do this, probably in about two months. That could be a fairly exciting get together since everyone wants their program in erasable. If wonder if there is a message in that observation.

Discussions on the AS-258 programs reopened the one remaining runny sore at MIT - newly, the inadequacy of the digital computer facility. This darn thing was flagged out for attention last spring, but in spite of all our best efforts we are still in a hole. The two 1800 computers are completely saturated as it was predicted they would be, and shall continue to be until the AS-206 program is released on about March 1st. [Alex Kosmala and Fred Martin report one to four-day turn around or their AS-258 program development computer runs (horrible)]. I expect that within six to eight weeks after that point they will probably be saturated again, and I'm completely frustrated as to what to do about it.

A handful of MIT people, such as Cliff Ide, have been working on this problem, and I must emphasise that these words are certainly not intended as any criticism of them. On the contrary, they have been doing an outstanding job. But the fact remains the IBM 360 computer is still not on the air and probably won't be for a long time. Although MIT reports otherwise, I suspect the MAC compiler, when it finally arrives, is not going to deliver us from our problems. Apparently the Fortran approach is not going to either, although MIT appears to have put as much effort and attention on it as you could expect from a group who basically didn't like the idea in the first place. They finally are also reporting IBM 360 equipment and programming systems problems like we have in the RTCC. I wondered when that would happen.

Jim Miller reported on the progress of the AB-206 program which was scheduled for release on February 22nd at that time. [A late breaking requirement for obtaining some special DAP data for postflight analysis during this mission has forced a program modification and a week's delay on us]. Jim's report was very encouraging - the program was in the final

stages of verification and apparently is behaving very well. I might also point out that MIT had used the delays required for getting some of the maneuver phases of the program working to add computer restart protection pretty much throughout the program. Although this had not been identified as a mandatory item by MBC, I think all of us involved were rather concerned at leaving it out (for schedule reasons). The MIT people have worked very hard on this program and because a lot of credit, both for their maintenance of extremely high standards and for their extra effort in trying to maintain a reasonable release schedule.

Howard W. Bindell, Jr.

Addressees: (See attached list)

UNITED STATES COVERNMENT

Memorandum

ro :: See list

DATE: JAN 8 1 1967

FROM : In/Deputy Chief, Mission Planaing and Analysis Division

67-310-17

SUBTROF:

AS-206 Spacecraft Computer Program Revaletter

We had another long AS-206 program development discussion at MIT on James y 26th, and some things came up you might find interesting.

Piret of all, there is only one mission phase that has not been audersafully run at this time - massly, the second AFS maneuver. There is some feeling that this may be due to improper targeting as opposed to problems in the actual program. Completion of a satisfactory test of this mission phase will signal configuration control of the assembly to be maintained until the final release of the program. It is planned that verification testing to assure flight realiness will be complete on Pebruary 15th, and we've set February 17th as the date for the formal MiC review of the AS-FOS program verification results. Final acceptance of the program, prior to rope manufacture, is based on this MIT presentation which will be here in Houston.

Although MIT insists that the Digital Auto Pilots are adequate for the mission, there are several program modifications under consideration in this area. In fact, MDRB's have been requested from MIT which must be acted upon very promptly if they are to be included. Briefly, they are the following:

- a) As I understand it, an instability, due to fuel slosh, has been discovered anking it desirable to modify the Kalman filter gains in the DPS DAP. As presently designed, when the RCS tanks get fairly empty, fuel slosh causes control to oscillate back and forth between the DPS and RCS Digital Auto Pilots. This results in inefficient use of RCS fuel, although it does provide adequate control of the vehicle. Since AS-206 does not have an RCS propellant shortage, it is not mandatory to make the change until a later mission. The primary advantage of doing it now is to get a test of the "ultimate" system.
- b) At some time during the PPB maneuver, it was intended to freeze the DPS engine position, i.e., no further steering commands would be given to the DPS and all control would be carried out with the RCB. This had been proposed an an interim fix of the instability problem noted in (a), but subsequent testing at Grumman of the DAP on their digital simulation has shown that misslighment of the thrust vector from the space-craft og actually results in a greater use of RCB fuel than is spent in

Buy U.S. Savings Fonds Regularly on the Payroll Savings Plan

controlling the fuel slosh induced instability. We have requested an MDRS to fix the program so that it does not freeze the engine position. (Incidentally, there is concern that engine ball ablation or erosion may cause large thrust vector usualignment, and freezing the engine deflection during the maneuver could present a significant problem in that event).

collected during the AS-206 flight for adequate analysis of the Digital Auto Pilots. It has been found that the PCM data will be saturated due to the unusual platform alignment which is required on this mission. Therefore, they are anxious to obtain another source of this data which they have identified as essential from the very beginning. One of their proposals is that the downlink be interrupted for four or five seconds during the DFB maneuver, substituting in it's place CDU data sampled every twenty milliseconds. Further, they feel it would be highly dearnable to suppress the DAP during this period in order that the data be independent of control activity. Almost surely this type of program modification will cost a lot of time even if agreement could be reached by all parties that it was an acceptable change technically.

I predict we will not make change (a) but will make change (b) since it's so simple. I really an concerned about not getting the DAP date for postflight analysis since that is one of the primary reasons for flying the mission in the first place. Resolution of whether or not to make change (c) will probably bounce all of the way up to the Spacecraft Program Hanager.

MIT reported that it looks like nothing can be done in either the hardware or software to fix the AS-206 downrupt problem. This, you recall, is the problem resulting from higher priority computer tasks preventing the computer from servicing the downlink needs ever so often during maneuvers. This causes that data frame to be garbled on the ground. As I understand it, it is possible to unscrumble this data postflight, thus it is only a real time flight control problem which we have recognized and agreed to live with on this mission.

I hear that Grumman has not yet been able to use the tapes delivered to them due to problems with their own facility. I get the distinct impression that we have been "had" on this. Apparently Grumman knew their facility would not be ready on schedule, and in order to salvage their incentive points, get us (EC) to give them a waiver based on our confension that the GFE computer program would not be available as promised. I guess we Texans are no match for those slick New York yankees.

That's about it. Obviously our toughest job is going to be wrenching this program out of MIT's greap, sinds to them quality still comes before schedule. But that's just a little game we are playing, an' i don't

consider it unbealthy. I'm really not near an worried about the quality of the AS-206 program as they are, but I am very anxious to get this bunch of experienced AS-206 gays off onto the AS-278 programs as toon my possible.

Howard W. Findall, Jr.

Addressees: NO/D. C. Cheatham 1023/K. J. Cox EG25/T. V. Chambers EG26/P. E. Ebercole EG27/D. V. Gilbert ECAC/B. Reina E043/R. E. Levis MO43/M. Kayton 1043/C. r. Vasson KA/R. F. Thompson KM/W. H. Hamby PA/J. F. Sheu PA/N. A. Lee PD/R. W. Williams 1704/A. Cohen FM/O. E. Maymard PM2/C. H. Perrine -PMP/K. L. Turner FA/C. C. Kraft, Jr. FA/S. A. Ejoberg FA/R. G. Rose FC/J. D. Hodge PC2/E. F. Kranz FC3/A. D. Aldrich FCh/M. F. Brooks FC5/G. W. Lunney PC5/H. D. Rood FC5/J. E. I'Annon FS/L. C. Durzeith FOD/T. F. Gibson, Jr. 1815/R. O. Notbern

PM/J. P. Mayor
PM/C. R. Muss
PM/C. R. Muss
PM/C. V. Jenkins
PM/S/J. P. Dating
PM/S/J. P. Bryants
PM/S/R. P. Darton
PM/Eranch Chiefs

PM:IMT:on

Fis/P. J. Stull

105/L. A. Fry

Memorandum

To : See list

IMTK! JAN & a tree

FROM : PN/Deputy Chief, Mission Planning and Annlysis Division.

67-M1-16

subject: AAP platform should be torqued to local horizontal

In thinking about it a little more, I guess I should have pointed out in the last of these little notes that I'm assuming if we use horizon scanners, we will go shead and torque the platform at orbit rate. This, of course, will require a certain amount of modification in some of the spacecraft computer programs but should not present an overwhelming problem. In fact, I have informally asked from Scars to look through his lists and let us know which ones would be affected. Once we have done that I suppose we will have climinated the problem of the orbit rate hall, the value of which I don't believe anyone can argue.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Memorandum

TO & See list

DATE: JAN 3 0 PS/

FROM

PM/Deputy Chief, Mission Planning and Analysis Division

67-110-15

subject:

Program interlocks - farewell

Ever since I've been involved with these spacecraft computer programs there has been an awful lot of flak regarding the program interlocks. Specifically, in the AS-20h program, there is a "Verb 37 Table" which prohibits the astronaut from calling up certain programs out of sequence. Constraints of this nature have been labeled intolerable, not only by the flight erew but by many other influential people. As a result of this, and partly due to the greatly increased complexity of the AS-258 programs, MIT has decided to include no interlocks whatsoever in them. Therefore, in the future it will be the crew's responsibility to see to it that they don't call programs in an improper sequence. The result of doing so may be as trivial as getting a bunch of garbage for unevers, or in some cases could seramble the programs to the extent that it is necessary to initiate the sequence over again - perhaps at the cost of a considerable amount of time and effort. Apparently, there is no known irrecoverably.

Since erew procedures will take the place of the "Verb 37 Table" in the AS-258 programs, MIT has prepared a preliminary program-matrix defining the sequences it is necessary to follow as the erew moves from one program to another. Copies of this preliminary matrix are available from Rick Nobles and Paul Stull for use in the development of erew procedures.

I am sure this will make all you interlock critics happy.

Howard W. Tindall, Jr.

Addressees: (See attached list)

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

EG23/K. J. Cox

DATE: JAN 3 0 ES

PROM : PM/Deputy Chief, Mission Planning and Analysis Division

67-510-14

SUSJECT: Data for postflight analysis of the DAP

Ken, this is to remind you that you are carrying the ball for getting high rate CDU data on the downlink during DPS burns if you feel it is necessary for postflight analysis of the Digital Auto Pilot. MIT people, particularly George Cherry, are emphatic in stating this data is sandatory for DAP development and they claim you are in complete accord on this. I imagine it will be a tough battle for you, so I suggest you get it going as soon as possible. Our guys in the Flight Software Branch will assist you in any you request, I'm sure.

Bouned W. Tindall, Jr.

CC:
PDb/A. Cohen
PC/J. L. Tomberlin
FS5/T. F. Gibson, Jr.
FS5/R. O. Nobles
FS5/J. R. Garman
FS5/T. D. Kecton
PM/J. P. Mayer

FM: HWT: CR

Bery U.S. Savings Bonds Regularly on the Payroll Savings Plan

UNITED STATES GOVERNMENT

Memorandum

TO : CA/Director for Flight Grew Operations

Date: Jan 2 5 1967

PROM :

FM/Deputy Chief, Mission Planning and Analysis Division

67-1101-13

SUBJECT:

AGS Software Documentation

Reference: Memorandum from CA/Director for Flight Crew Operations to FM/Howard W. Tindall, Jr., "AGS Software Documentation", dated January 18, 1967.

The current status of Abort Guidance System (AGS) software documentation is given here in reply to the referenced memorandum concerning the same subject.

The LM ACS Software Development and Verification Plan, dated May 25, 1966, is currently being revised. Among other things, the content of the Operating Procedures Document contained in Design Report #3 for each mission will be redefined and the procedure by which MSC reviews and officially approves LM ACS Design Reports will be changed.

The Operating Procedures Document was not originally intended to be an all-inclusive document to be used by the flight crew for operational planning. However, since it could be used for that purpose if written with that objective in mind, we will take steps to incorporate your recommendations.

The Operating Procedures Document and Design Report #3 for the AS-258 mission will be released in a few days. This document will not contain the changes discussed by Cmdr. Mitchell with MPAD and TMW personnel on January 19, 1967. However, these changes and those listed in the referenced memorandum will be incorporated into the AS-503 Decrating Procedures Document. Preliminary copies of this document will be available for your review by February 15, 1967. The final AS-503 document will be available by about March 1. It is expected that the AS-258 and AS-503 AGS program and procedures will not be different. Therefore, the final AS-503 documents may be used in your work in preparation for both the AS-258 and AS-503 flights. If this is not the case, differences will be clearly pointed out in the AS-503 documentation.

cc: (See attached list)

CE:
CB/J. A. McDivitt
CB/F. Borman
CB/N. A. Armstrong
CB/E. D. Mitchell
CF22/C. C. Thomas
BG/R. C. Duncan
PA/J. F. Shea
PM/O. E. Maynard
FA/C. C. Kraft, Jr.
FA/S. A. Sjoberg
FM/J. P. Mayer

PM: FJBuler: cm

Memorandum

TO : Sec list

DATE: JAN 2 5 1967

PROM : PM/Deputy Chief, Mission Planning and

67-M1-12

Analysis Division

Why does the AAP command module heed a sextant!

Use of horizon scanners for AAP earth orbital missions would considerably reduce the crew's workload and would eliminate the operational constraint of only being able to align the platform when the spacecraft is in darkness. I realize the use of horizon scanners has already been suggested and is being investigated.

The reason for this note is to point out that if we put a radar on the AAP command module to take care of rendezvous and put horizon scanners on to line up the platform, I really can't think of any reason why we need that sextant any more. Of course, I haven't thought much about it, but it seems to me there might be a considerable saving of weight to go that way as well as making the spacecraft a heck of a lot better for general purpose, earth orbital missions.

Howard W. Tindall, Jr.

Optional Point No. 18 Mat 1843 (Dillow 814 (PME (4) CFM 181—11,8

UNITED STATES GOVERNMENT

Memorandum

TO : See list

DATE: JAN 8 5 1987

FROM :

FM/Deputy Chief, Mission Planning and

Analysis Division

67-M1-11

BUBJECT:

More about computer self check

If they ever have a contest to select the piece of Apollo with the funniest history, I would like to enter "computer self check". It came up again at the MIT review on January 12 as a possible candidate for deletion. One of the MIT guys gave a long, convincing argument in its defense, and although MIT pointed out that approximately two-thirds of the program was not mandatory for flight, they certainly gave the impression it was highly desirable. It was only the next day we found out the actual MIT position was a recommendation to delete most of the self check program, and they were disappointed that we had not done so. Weird.

Something else just happened I think you will find amusing. You remember troubles were discovered in the AS-202 self check program and it was deactivated before the flight to prevent it from screwing up the system. Well, I hear the same thing has happened on the AS-204 program. I guess we should be happy they discover these problems before the flights instead of during them. Apparently if the system were left as it is now, it has the potential of bombing out the system irrecoverably. I assume, or at least hope, that if it did that, it would light the little red light.

Howard W. Tindall, Jr.

Memorandum

TO 1 Sec list

DATE: JAN 2 8 1967

FROM : FM/Deputy Chief, Mission Planning and

67-FM1-10

Analysis Division

subject: AS-504 spacecraft computer program and storage status. Also a dash

of AS-258.

On January 12 a great herd of us went to MIT to review the AS-504 space-craft computer program requirements, or at least the questionable items, to make sure we would not overflow the computer storage capability. The consensus of those present was that MIT had put together an excellent presentation defining, with considerable precision, the over-all computer storage situation as well as a very reasonable proposal on which to have our future work. This meeting had none of the fire and excitement of last May's Black Friday. In fact, this one is not worthy of that name.

In brief, MIT told us that presently defined programs exceed memory by about 2,000 words in both the CMC and LGC but that by the removal of certain pre-flight interface and system tests, along with a simple clean-up of the computer programming itself (such as removal of redundant sub-routines and constants), we could provide a positive margin of about 1,500 words.

The rest of the day, and the following morning, was spent in discussion of programs identified by MSC and MIT as non-mandatory that are to be deleted either now or when more storage is needed. As a result of all that, we obtained potential pads of about 4,100 words in the LGC and 5,300 words in the CMC. These would result from making all thirteen deletions noted below in List 1. We also identified a number of potential changes and additions which are documented in the second list below with their presently agreed upon disposition. Obviously some of these absorb some of that precious pad, but I guess that's what it's for.

List 1 - Possible Deletions

Categories were:

- A. Program to be removed immediately no further effort to be expended.
- B. Routine to remain in the program now but subject to later deletion work to continue but on a low priority.
- C. Routine to remain in the program now but subject to later deletion and further effort required since the work is complete at this time.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

		AB-238 AB-504
		TCC CWC TCC CWC
6.	CALCMANU mancuver to input gim	
	anglen	
7.	Transformation routine to alig	n ln in
8.	IMU align using reticle (to pro DEKY mark capability)	ovide
9.	Rendezvous navigation using re-	tiele D c D
10.	External targeting of Lambert	steering F F E
33.	"musable memory onto downlist	D D B B
12.	frim option to P ho and h2	2 2 2
13.	Perform desk calculator type A	metion F F F
14.	8-band pointing angle display	
15.	Uplink	
16.	LR renocableness check	
17.	Entry displays to be referenced oblate earth	l to

At least this is the way I think things stand. And now we'll start taking calls from the audience.

Howard V. Tindall, Jr.

Memorandum

Sec list

FM/Deputy Chief, Mission Planning and FROM Analysis Division

GY-110-9

subject: Intest on the AS-206 spacecraft computer program

During the Januar: 1' program development plan meeting at MIT, a couple of things came up regarding the AS-206 program that are probably worth recording here.

The most significant one, affecting date of the program release, involves verification testing. MIT has laid out a complete test plan of about 46 rune. It was their strong recommendation that if time parmits, i.e., if other factors are delaying the flight sufficiently, they should carry out the entire test plan. This would flight qualify the program not only for the nominal mission, contingency orbit insertion and launch aborts, but also would verify the system's capacity for tolerating spacecraft systems failures such as RCS jets or computer interrupts, etc. They felt they could do the whole business by February 15, going into configuration control about the 1st of February. Alternatively, MIT and MCC people have identified nine computer runs which the program must execute succession fully before we would be willing to use it in flight. These ministory tests could be carried out within the previously stated schedule with a release on about January 30. The Apollo Spacecraft Program Manager gave permission to slip release of the flight program to do the more complete job in accordance with our recommendation to do so on January 12 very

You will recall our agreement with Grumman to release a program tape to them whenever they felt the program and their wastlity were ready. It is my understanding that we are making the first of these program releases on about January 18 along with sufficient typical text runs and verbal instructions to permit Grumman to make the most of it. Since early December, Grumman has assigned one of their better prople, Clint Tillman, to duty at MIT for about two or three days each work. This arrangement seems to have worked out very well from everyone's viewpoint, I'm very pleased to report.

The AS-206 operational trajectory has just come out and apparently is based on four-second ullage. Since this indicated there is some confusion. Tommy Gibson and I thought it might be worthwhile to reiterate here that the appropriate computer program is being levigued with thirteennecond ullage as previously reported. This diamater was saleutel, you recall, to provide adequate ullage in the event ball two jets we active. It was our way of protecting against RCS jet Tablures without providing logic for changing ullage time in that event.

The have experienced considerable difficulty in obtaining from the Engineering and Development Directorate the happenerry propulation system data needed to complete the formulation of the spacerraft cusmics prome grams. Because by that organization has been completely unacceptable. I suspect this is partially due to the rather informal manner in vitals this data was requested. It is obvious that we cannot continue to operate this way, and so in the future requests for this information will be made on a much more formal basis - smothered in the usual stack of paperwork, signed by the necessary managers around here. It is evident that if we fail to deliver this data on schedule to MIT, slips in the delivery of the flight programs will be charged to us - and with some justification.

You remember the business we went through some months ago regarding the attitude hold mode to be programmed in the LOC for use during separation of the LM from the BIVB. Without going through all that history, it is probably sufficient to report that MIT has finally concluded they can develop a better program providing inertial attitude hold rather than the attitude rate hold I previously reported would be programmed.

For whatever it's worth, I might summarize my impression of AB-206 program quality. In spite of considerable difficulty in pulling this program together at MIT, Jim Miller and Dan Lickly have done a commendable professional job, and I really expect this program to perform very well for us. Considerable credit is also due Tom Cibson, Carl Huss and a number of others in providing the necessary coordination and input from MIC. I don't know why I'm sticking my neck out on a prediction like that. Just living dangerously, I guess.

Howard W. Tindall, Jr. Willaup

Memorandum

TO : F6/Chief, Flight Support Division

DATE JAN ES SA

FROM t TW/Deputy Chief, Mission Planning and Analysis Division 67-M1-8

SUBJECT: Justification for SCAMA eircuit to MIT/Boston

This memorandum in to provide justification for the addition of a SCANA circuit between Houston and MTT/Roston and two additional telephonen in Building 30, NSC.

The Flight Control Division has established a requirement that consultative nervices by knowledgeable MIT personnel be readily available during Apollo flight operations. Since the impact on future computer program development of extended tours of duty at Mission Control Center-Houston by key MIT personnel is unacceptable, an alternate approach has been proposed by MFAD and accepted by FCD. This approach is for Flight Software Branch personnel to provide this service in the Mission Control Center-Houston with immediate access by special communication circuits to the aforementioned MIT people at their disposal. Discussions with personnel of your Division have led to the conclusion that a special SCAMA circuit directly between MSC and MIT/Boston is most suitable and economical for this purpose. This circuit should be terminated at the MIT switchboard in Boston. Access to it must be available in the Flight Dynamics Staff Support Room of Building 30, MSC.

The need for rapid and convenient communications between those persons at MSC responsible for technical direction of MIT in the area of space-craft computer programming has been long recognized. Present communications are of poor quality and often result in significant delays in the relay of important information. It is estimated that in the order of 200 telephone calls per month have been made over the last several months, and it is anticipated that the frequency is likely to increase. It is evident that addition of a SCAMA phone providing access to the mission support circuit requested above will not only improve communications but should result in a significant ravings to the government by its absorption of telephone calls which are otherwise carried out on commercial and PTB circuits. This instrument should be located in the officer of the Flight Software Branch on the second floor of Building 30.

Since the AS-204 similations and actual operation are imminent, and since the non-operational need is continuing, it is requested that these addi-

tional facilities be provided as suon as possible. If further assistance is required in establishing our heeds in more detail, please constact either Stan Mann (Flight Software Branch) or myself.

Howard W. Mindall, Ji

cc:
EG/R. C. Duncan
PD4/A. Cohen
FA/C. C. Kraft, Jr.
FA/S. A. Bjoberg
PC/J. D. Hodge
FB2/O. L. Jones
FS5/T. F. Gibson, Jr.
PM/J. P. Mnyer
FM/C. R. Hung
PM/M. V. Jenkins

PM: HWT: cm

Limorandum

is let list

DATE

enen : FW/Deputy Caler, Mission Planning and Applysis Division

67-FXC-7

SELECTED 21

Why is it everyone who likes recer weers a white hat?

In one of these notes eight or ten months ago, I commented that it assesses to me the Apollo command module really does not have an operational for derivous capability. In response to that, I was told to "think poblished ami that's what I'm doing for main line Apollo. Rowever, it would be unfortunate if we do not attempt to fix the AAP spacecraft. As flunders about it, it is currently planted to carry out home rather and the beauti arbital alastons involving autiple rendervode in which the black A module is not only nominally the active vehicle but is the call which manned - juite a different elemation than the luner landing many but Blace admining account will depend completely upon the comming as file; ing which to energy out these various rendervous within a reasonable with propellant budget, Ct seems mindutory to me that some sort of realistic composition measuring system to provided Of course, a complete realized would be even better? Tailure to do this will mean the renderyour offer tion mass be carried out with that optical guidance system which is was beavily dependent upon a priori information. "A priori" is the mathem dictions way of saying that the ground control must be both timely this entronely proving in it's assistance. Such dependence is rather undystable ble and constraining, of course. Jut I would like to point out what expect one of the worst situations Vill occur during terminal phase linguistics ing when ground assistance is almost worthless.

I would like to emphasize that all of this is just my opinion and is not necessarily the position of my division or directorate. I'm sure this are large with who would argue that the optical system is perfectly and are the chical trails whiting for the standard perfect will get us into the position where it is too late to like up the commons source for those ALP missions. Let's vote.

Howard W. Tindail, Jr.

Addresseet (See attached list)

Say U.S. Savings Bonds Regularly on the Payroll Savings Plan

Memorandum

Bee list

PM/Deputy Chief, Micrion Planning and

Analysis Division

67-FM -6

subject: AS-50% Spacceraft Computer Programs will be able to support

earth orbital and lunar missions

At one time I had nort of expected that we would have to maintain two basic progresss for each of the Apollo spacecraft - one for earth orbital. operations and one for lunar operations. The former would probably be a refinement of the AS-258 programs and the latter of the AS-504 progroms. Further investigation, primarily by Norm Scars of MIT, has revenled that it should be possible to develop spacecraft programs for the lunar mission which will also bendle earth orbital missions of at least the AS-258 complexity. Accordingly, it is our intention to develop the AS-50% programs in this way for use on all main line Apollo flights after AS-503. They will be designed to even permit execution of alternate mission plane as a result of contingency situations occurring during the operation. That is, the earth orbital versus lunar option can be exercised in-flight an well as pre-flight.

This new capability provides a confiderable flexibility as well as allowing us to exercise the lumar mission programs in earth orbit. Since it is somewhat of a departure from our original plans, I thought it would be worthwhile to tell you about it.

Howard W. Tindall, Jr.

Memorandum

O : See list

DATE: JAN 1 0 1967

PROM :

PM/Deputy Chief, Mission Planning and . Analysis Division

67-FML-5

BUBJECT:

Significant modifications currently planned in the Apollo Spacecraft Computer Programs

Quite a number of decisions have been obtained from the Apollo Program Manager affecting the development of the AS-258 and AS-504 spacecraft computer programs which I am recording here for my own later reference. As usual, I will send it along to you on the chance that you might be interested.

RCS translation maneuvers:

Although provision was being made in the AS-258 and AS-504 computer programs for GAN controlled RCS translation maneuvers, this capability is being deleted. As I understand it, the flight crew supported this decision which implies that all RCS translation maneuvers in both the command module and LM must be performed manually.

Auto proceed:

Auto proceed is the misleading term which has gained popular usage to define a capability requested by the crew for simplifying the procedure whereby the computer is commanded to progress on to it's next function with minimum input from the crew. At one time it was proposed that there be no input at all from the crew under certain circumstances. However, at this time the goal argarently is to provide the crew with the capability of making a "Proceed" command to the computer by a keyboard button assigned exclusively for that function in place of "Verb 33 Enter" - a 4-punch operation. No modification is currently planned associated with this in the AS-258 programs. However, Dr. Duncan has stated that it is his intention to provide this capability on the AS-504 and subsequent spacecraft through the redesignation of the "standby" button.

Direct intercept:

This program, which provides the capability for the crew to target a minimum ΔV , 2-impulse rendezvous sequence of maneuvers, was originally included to provide a flexibility it was felt might be required. Rendezvous mission planning, including aborts at the moon, has now progressed to the point where there is no recognized need for this processor, and as a result it is to be deleted from all Apollo spacecraft computer programs.

LM S-band antenna steering:

Although it had been tentatively decided to drop this capability, more definitive mission planning has revealed that there are critical periods in the mission, particularly during descent, wherein crew activity demands computer assistance in steering the LM S-band antenna to acquisition with the ground. Accordingly this capability is to be provided in the AS-504 LM program.

LM platform alignment while docked:

The Program Manager feels some provision should be made for alignment of the LM platform while docked without attitude maneuvering of the craft. The procedure he proposes is for all necessary computations unique to this process to be carried out in the LGC utilizing data already available from the CMC programs. It is probably too late to provide this capability in the AS-208 program, but it should be available for AS-504.

DPS backup of SPS:

At one-time there was some consideration given to deleting the DPS backup of the SPS. Since procedures must be developed making large DPS maneuvers docked on the development flights, this proposal has been dropped.

Descent guidance:

Another major program change which has been unier consideration is to substitute for the current landing site targeting a fuel saving approach referred to as "range free". In view of recent developments associated with the LM spacecraft hardware, this proposal is not considered a requirement at this time, and so the descent guidance will proceed as it has without change. However, analysis will be carried out on the G&C proposed modification to the descent program which would permit a range free option if that should become necessary at some future time. This option will not be included in the AS-504 LM program unless time and storage permit. A decision on this matter probably need not be made for another four or five months.

Our long awaited "Black Friday" review at MIT is now scheduled for Thurs-day, January 12, 1967. At that time other modifications will probably be made for storage reasons based on priority and size of the various processors and their options. It should be lots of fun. I'll let you know if anything interesting happens.

Memorandum

ro : See list

DATE: JAN 1 0 1967

PROM

FM/Deputy Chief, Mission Planning and Analysis Division

67-FML-4

SUBJECT:

No special spacecraft computer programs are to be developed for AS-208B and AS-503

The decision has been made by the Apollo Program Manager that unique computer programs need not be developed for missions AS-208B (IM) and AS-503 (CM). This decision was brought about due to concern that effort on these programs would affect development of the main line programs. It is certainly consistent with numerous other actions taken recently in support of this activity such as augmenting the MIT staff and providing additional facilities for this work.

AS-208B LM:

As you recall, MIT had been directed to develop a LM program in support of the AS-258B alternate mission to be flown if some failure on AS-206 precluded flying the AS-258 mission as planned. It was to provide the capability for the crew to initialize the system such that it could carry out an unmanned maneuver sequence basically equivalent to that planned for AS-206. The only addition to the AS-206 program for AS-208B was the capability of performing an inflight alignment of the platform by the crew. Although MIT has been directed to cease work on a unique AS-208B program, they have been requested to investigate the use of the AS-206 program without change for the AS-258B mission. I feel there is a good chance that by a combination of special crew procedures and assistance from the ground, techniques could be developed for carrying out this backup mission with that program.

AS-503 CM:

It had been felt desirable to add three capabilities listed below to the AS-205 CM program specifically for the AS-503 mission. Since the schedule impact was unacceptable for the AS-258 mission, direction had been given to MIT to develop a unique AS-503 command module program consisting of the basic AS-205 program with the following added: (a) astronaut steering of the booster into earth criti, (b) star/landmark and star/horizon navigation, and (c) This steering of the SIVB. Now, based on a review by the Apollo Program Manager, it has been concluded that the over-all Apollo project will benefit more by using the AS-205 program as in. MIT has been directed in accordance with this decision.

For the sake of completeness, I might point out the rationale behind the decisions for these deletions.

- a) It has been concluded that astronaut steering of the booster is not required for main line Apollo. At some later time, when schedule and storage permit, it may be desirable to reconsider this addition. Agreement has been reached by all responsible management personnel, both here at MSC and at Headquarters, on this subject.
- b) It is felt that adequate experience and confidence may be obtained in the spacecraft navigation mode utilizing star/landmark and star/horizon observations on AS-503 by merely making the observations as previously planned, but not processing them onboard except to include them on the downlink for post-flight analysis.
- c) Although some elements of MSC have been proposing that command module guidance steering of the SIVR would be prime for the translunar injection (TLI) maneuver, the Program Manager emphasized that this is not MCC's position, and as a result the only purpose this program could provide on AS-503 is a backup in the event of a failure of the Saturn guidance prior to the maneuver. Adequate alternate procedures are available for post-flight analysis of the spacecraft guidance systems to determine if it could have handled this task properly in the absence of the actual TLI guidance program.

I should point out that it is currently planned to include the capabilities discussed in both (b) and (c) in the AS-504 command module program.

Howard W. Tindall, Jr.

Memorandum

io : Sea list

DATE: JAN 9 1967

ROM :

TM/Deputy Chief, Mission Planning and Analysis Division

67-**370**0-3

UE ZCT:

Rope manufacture for AS-502

This note is to inform everyone that the AS-502 spacecraft computer program ropes will be made precisely the same as those for AS-501. Specifically, it is MIT assembly Solarium 55. You recall Solarium 54 was our original AS-501 A-release, but it was necessary to make a modification in one of the rope modules to correct a scaling problem.

Cline Frasier was given the recommendation to direct Raytheon in accordance with this on January 5, and it is my understanding that he intended to have Raytheon begin rope manufacture for AE-502 immediately. He informed me that the manufacture of the AB-501 ropes will be completed by about January 12th.

Howard W. Mindall, Jr.

• Memorandum

M2/Flight Software Branch Attention: R. O. Nobles

DATE: JAN 9 1967

Acat & The Deputy Chief, Mission Planning and Analysis Division

67-1M1-2

waysor:

Procedures needed for the AS-503 TLL maneuver

This note is to back up our telephone demorphism (1/5/67) in which I requested you to prepare her recommendation as to how the AGC should be used during the six plated translunar injection maneuver on AS-503. It's certain the craw will want to manitor the progress of this large SIVB maneuver, even though it's nontrolled by the Baturn guidance system. You were to find out what capabilities exist in the AS-205/503 program for use during this mission phase. For example, one possible solution is for the craw to observe a display of velocity, altitude and altitude rate if this launch phase processor is functional at that time.

Howard W. Tindall, Jr.

ec:

CE/F. Borman

CP/P. Kremer

CF/C. C. Thomas

CF/D. Grimm

CF/C. H. Woodling

EG/R. C. Duncan

EG/D. C. Cheatham

EG23/K. J. Cox

PA/J. F. Shea

PD4/A. Cohen

PC/C. B. Parker

PM/J. P. Mayor

FM/C. R. Huss

FM/M. V. Jenkins

Mile/J. F. Dalby

FM13/J. P. Bryant

FM14/R. P. Parten

PM: HWT: cm

FM/Branch Chiefs FM2/T. F. Gibson, Jr. FM2/P. J. Stull FM2/L. A. Fry FM13/J. R. Gurley

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

Memorandum

FMP/Flight Software Branch

DATE: JAN

67-FML-1

FM/Deputy Chief, Mission Planning and

Analysis Division

SUBJECT: Uplink will be on IM-4

> A decision was made yesterday which I am sure will make a lot of people happy ASPO has finally decided to equip the IM-4 with a digital uplink. Obviously, the associated computer programs must be added to the AS-504 LM program. I assume that these are the same as those developed for AS-208 and should present no significant problem."

Apparently it is too late to equip the AS-503 LM in this way, but since we are using the AS-208 program for that mission, that has no influence on our programming requirements. Please take whatever action is appropriate regarding technical direction to MIT.

Howard W. Tindall, Jr.

cc: CF/C. C. Thomas CF24/C. A. Jacobson EG/R. C. Duncan EG25/W. H. Humby EG43/R. E. Lewis PD4/A. Cohen FC4/M. F. Brooks FL/J. B. Hammack FM/J. P. Mayer FM/C. R. Huss FM/M. V. Jenkins FM2/P. J. Stull

FM:HWT:cm

