Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Forum:Space Shuttles - Space Station
Topic:[ISS] BEAM to test expandable habitat design
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

Robert PearlmanJessica Meir on Twitter:
@Astro_Jeff reports "Pristine inside #BEAM!" Successful 1st ingress and 1st @BigelowSpace selfie @Space_Station
Robert PearlmanNASA photos
The entrance to the Bigelow Expandable Activity Module (BEAM) is seen during sensor installation after successful expansion.

The interior of the Bigelow Expandable Activity Module (BEAM).

And from Tim Peake on Twitter:
Expedition 47 is coming to an end — it's been great working with this crew! (pic taken inside the new BEAM)
SkyMan1958Interesting pics.
Robert PearlmanFrom Bigelow Aerospace (BA) on Twitter:
As BEAM continues to outperform expectations, NASA and BA
are in agreement to evolve BEAM into becoming an everyday asset aboard the ISS.
Robert PearlmanIn a statement to SpaceNews, company founder Robert Bigelow said more details about any agreement with NASA about extended use of BEAM would be released at a later date.
"We are excited that BEAM may serve multiple uses that could extend its time attached to station well beyond the original two-year expected period," he said. "We will be happy to provide more specifics as this process develops shortly."

NASA spokeswoman Cheryl Warner said Jan. 18 that the agency was still in discussions with Bigelow about "next steps" for BEAM. "The BEAM demonstration is providing valuable data regarding how the materials and an expandable structure perform in the space environment," she said. "We are in discussions with Bigelow Aerospace to evaluate the next steps for the module."

Robert PearlmanNASA release
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

Halfway into its planned two-year demonstration attached to the International Space Station, the Bigelow Expandable Activity Module, or BEAM, is showing that soft materials can perform as well as rigid materials for habitation volumes in space. The BEAM was launched and attached to station through a partnership between NASA's Advanced Exploration Systems Division (AES) and Bigelow Aerospace, headquartered in North Las Vegas, Nevada.

NASA and Bigelow are primarily evaluating characteristics directly related to the module's ability to protect humans from the harsh space environment. Astronauts aboard station work with researchers on the ground to monitor the module's structural integrity, thermal stability, and resistance to space debris, radiation, and microbial growth.

Above: Astronauts aboard the space station 3D printed a shield to cover one of the two Radiation Environment Monitors inside the BEAM. The shield, the white hemispherical shape at the center of the photograph, is shown above inside the BEAM module. In the coming months, the crew will print successively thicker shields to determine the shielding effectiveness at blocking radiation.

Researchers at NASA's Langley Research Center in Hampton, Virginia, continually analyze data from internal sensors designed to monitor and locate external impacts by orbital debris, and, as expected, have recorded a few probable micrometeoroid debris impacts so far. BEAM has performed as designed in preventing debris penetration with multiple outer protective layers exceeding space station shielding requirements.

Over the next several months, NASA and Bigelow will focus on measuring radiation dosage inside the BEAM. Using two active Radiation Environment Monitors (REM) inside the module, researchers at NASA's Johnson Space Center in Houston are able to take real-time measurements of radiation levels. They have found that Galactic Cosmic Radiation (GCR) dose rates inside the BEAM are similar to other space station modules, and continue to analyze contributions to the daily dose from the Earth's trapped radiation belts to better understand the shielding properties of the module for application to long-term missions. The space station and the BEAM enjoy a significant amount of protection from Earth's magnetosphere. Future deep space missions will be far more exposed to energized radiation particles speeding through the solar system, so NASA is actively working on ways to mitigate the effects of radiation events.

In late April, NASA's radiation researchers at Johnson began a multi-month BEAM radiation experiment by installing a .04 inch (1.1 mm) thick shield onto one of the two REM sensors in BEAM. The station crew produced a hemispherical shield using the 3-D printer on the space station, and in the next few months this first shield will be replaced by two successively thicker shields, also 3-D printed, with thicknesses of about .13 inches (3.3mm) and .4 inches (10mm), respectively. The difference in measurements from the two REMs — one with a shield and one without — will help better resolve the energy spectra of the trapped radiation particles, particularly those coming from the South Atlantic Anomaly.

Space station crew members have entered the BEAM nine times since its expansion in May 2016. In addition to the REM shielding experiment activities, the crew has swapped out passive radiation badges called Radiation Area Monitors and they routinely collect microbial air and surface samples. These badges and samples are sent back to Earth for standard microbial and radiation analysis at Johnson.

The BEAM technology demonstration is helping NASA to advance and learn about expandable space habitat technology in low-Earth orbit for application toward future human exploration missions. The partnership between NASA and Bigelow supports NASA's objective to develop a deep space habitat for human missions beyond Earth orbit while fostering commercial capabilities for non-government applications.

Robert PearlmanNASA release
NASA May Extend BEAM's Time on the International Space Station

NASA is exploring options with Bigelow Aerospace to extend the life of the privately owned Bigelow Expandable Activity Module. Known as BEAM, the module is attached to the International Space Station and continues to perform well during its technology demonstration mission. NASA has issued a synopsis of an intended contract action to partner with Bigelow Aerospace to extend the life of the expandable habitat and use it for long-term in-orbit storage. This step continues NASA's commitment to expand private-public partnerships, scientific research and commercial applications aboard station to maximize the benefits from humanity's premiere laboratory in microgravity.

NASA's use of BEAM as part of a human-rated system will allow Bigelow Aerospace to demonstrate its technology for future commercial applications in low-Earth Orbit. Initial studies have shown that soft materials can perform as well as rigid materials for habitation volumes in space and that BEAM has performed as designed in resistance to space debris.

BEAM launched on the eighth SpaceX Commercial Resupply Service mission in 2016. After being attached to the Tranquility Node using the station's robotic Canadarm2, it was filled with air to expand it for a two-year test period to validate overall performance and capability of expandable habitats. Since the initial expansion, a suite of sensors installed by the crew automatically take measurements and monitor BEAM's performance to help inform designs for future habitat systems. Learning how an expandable habitat performs in the thermal environment of space and how it reacts to radiation, micrometeoroids and orbital debris will provide information to address key concerns about living in the harsh environment of space. This extension activity will deepen NASA's understanding of expandable space systems by making the BEAM a more operational element of the space station to be actively used in storage and crew operations.

Space station crew members have entered BEAM 13 times since its expansion in May 2016. The crew has conducted radiation shielding experiments, installed passive radiation badges called Radiation Area Monitors, and they routinely collect microbial air and surface samples. These badges and samples are returned to Earth for standard microbial and radiation analysis at the Johnson Space Center.

The original plan called for engineers to robotically jettison BEAM from the space station following the two-year test and validation period, allowing it to burn up during its descent through Earth's atmosphere. However, after almost a year and a half into the demonstration with positive performance, NASA now intends to continue supporting BEAM for stowage use and to allow Bigelow Aerospace to use the module as a test-bed for new technology demonstrations. A new contract would likely begin later this year, overlapping the original planned test period, for a minimum of three years, with two options to extend for one additional year. At the end of the new contract, the agency may consider further life extension or could again consider jettisoning BEAM from the station.

Using the space inside BEAM would allow NASA to hold between 109 to 130 Cargo Transfer Bags of in-orbit stowage, and long-term use of BEAM would enable NASA to gather additional performance data on the module's structural integrity, thermal stability and resistance to space debris, radiation and microbial growth to help NASA advance and learn about expandable space habitat technology in low-Earth orbit for application toward future human exploration missions. Given that the volume of each Cargo Transfer Bag is about 1.87 cubic feet (0.53 cubic meters), use of BEAM for stowage will free an equivalent space of about 3.7 to 4.4 International Standard Payload Racks, enabling more space in the ISS for research.

With an extension of the partnership, Bigelow also would be able to continue to demonstrate its technology for future commercial applications in low-Earth orbit. The public-private partnership between NASA and Bigelow supports NASA's objective to develop deep space habitation capabilities for human missions beyond Earth orbit while fostering commercial capabilities for non-government applications to stimulate the growth of the space economy.

HeadshotGood move on NASA's part. BEAM could the answer to many issues.

I really wish NASA contracted for a much larger inflatable module to test how a more voluminous structure performs and endures over a long period of time. It has so many potential applications as to boggle the mind.

Robert PearlmanUnder NASA's NextSTEP program, Bigelow Aerospace has been contracted to develop and test a prototype of XBASE (Expandable Bigelow Advanced Station Enhancement), a 330 cubic meter expandable habitat and test platform for deep space hardware.
HeadshotAny time frame on the XBASE deployment?
Robert PearlmanPresently, XBASE is only contracted as a ground-based prototype, though Bigelow has proposed launching the larger test module as part of NASA's call for ideas for commercial uses of the space station's unused berthing ports.
Robert PearlmanNASA release
NASA Extends Expandable Habitat's Time on the International Space Station

The Bigelow Expandable Activity Module, known as BEAM, will remain attached to the International Space Station to provide additional performance data on expandable habitat technologies and enable new technology demonstrations. NASA awarded a sole-source contract to Bigelow Aerospace to support extension of the life of the privately-owned module, and its use to stow spare space station hardware.

Above: ESA astronaut Paolo Nespoli completes some tests in the Bigelow Expandable Activity Module, or BEAM, on the International Space Station. (CREDIT: ESA/NASA)

After NASA and Bigelow successfully completed collaborative analyses on BEAM life extension and stowage feasibility, astronauts began the process to provide additional storage capability aboard the station by removing hardware used for the initial BEAM expansion. They then converted sensors that monitor the BEAM environment from wireless to wired (to prevent interference from future stowage items on transmission of sensor data). Next they installed air ducting, netting, and large empty bags to define the stowage volume for hardware inside BEAM.

NASA and Bigelow later will likely add a power and data interface to BEAM, which will allow additional technology demonstrations to take place for the duration of the partnership agreement.

This new contract, which began in November, will run for a minimum of three years, with two options to extend for one additional year. At the end of the new contract, the agency may consider another extension or could again consider jettisoning BEAM from the station.

The space inside BEAM will hold up to 130 Cargo Transfer Bags of in-orbit stowage. Long-term use of BEAM will enable NASA and Bigelow to gather additional performance data on the module's structural integrity and thermal stability and resistance to space debris, radiation, and microbial growth, to help NASA advance and learn about expandable space habitat technology in low-Earth orbit for application toward future human exploration missions. Using BEAM for stowage will free up about 1.87 cubic feet (0.53 cubic meters) of space in other station modules for research.

NASA's use of BEAM as part of a human-rated system allows Bigelow Aerospace to demonstrate its technology for future commercial applications in low-Earth Orbit. Initial studies have shown that soft materials can perform as well as rigid materials for habitation volumes in space and that BEAM has performed as designed in resistance to space debris.

BEAM launched on the eighth SpaceX Commercial Resupply Service mission in 2016. After being attached to the Tranquility Node using the station's robotic Canadarm2, it was filled with air to expand it for a two-year test period to validate overall performance and capability of expandable habitats. Since the initial expansion, a suite of sensors installed by the crew automatically take measurements and monitor BEAM's performance to help inform designs for future habitat systems. This extension will deepen NASA's understanding of expandable space systems by making the BEAM a more operational element of the space station to be actively used in storage and crew operations.

Space station crew members have entered BEAM more than a dozen times since its expansion in May 2016. The crew has conducted radiation shielding experiments, installed passive radiation badges called Radiation Area Monitors, and routinely collect microbial air and surface samples. These badges and samples are returned to Earth for standard microbial and radiation analysis at the Johnson Space Center.

lspoozJust don't get too comfortable.

(Shameless plug for local artist, and timely.)

HeadshotI have not seen any exterior images of BEAM since its inflation. Can someone direct me to a recent one?
Robert PearlmanThis photo is from April 2017:

Robert PearlmanNASA has hired a new company to provide engineering support for BEAM, reports SpaceNews.
In a Jan. 18 procurement filing, NASA announced it awarded a $250,000 contract to ATA Engineering of San Diego, California, to provide engineering support services for the Bigelow Expandable Activity Module (BEAM)...

NASA said that Bigelow "transferred title and ownership of the BEAM to NASA Johnson Space Center" in December as its engineering contract expired.

Contact Us | The Source for Space History & Artifacts

Copyright 1999-2024 collectSPACE. All rights reserved.





advertisement