Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Websites
related space history websites

Forum:Satellites - Robotic Probes
Topic:NASA's plans new Mars rover to launch in 2020
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

The planned portfolio includes the Curiosity and Opportunity rovers; two NASA spacecraft and contributions to one European spacecraft currently orbiting Mars; the 2013 launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter to study the Martian upper atmosphere; the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, which will take the first look into the deep interior of Mars; and participation in ESA's 2016 and 2018 ExoMars missions, including providing "Electra" telecommunication radios to ESA's 2016 mission and a critical element of the premier astrobiology instrument on the 2018 ExoMars rover.

The plan to design and build a new Mars robotic science rover with a launch in 2020 comes only months after the agency announced InSight, which will launch in 2016, bringing a total of seven NASA missions operating or being planned to study and explore our Earth-like neighbor.

The 2020 mission will constitute another step toward being responsive to high-priority science goals and the president's challenge of sending humans to Mars orbit in the 2030s.

The future rover development and design will be based on the Mars Science Laboratory (MSL) architecture that successfully carried the Curiosity rover to the Martian surface this summer. This will ensure mission costs and risks are as low as possible, while still delivering a highly capable rover with a proven landing system. The mission will constitute a vital component of a broad portfolio of Mars exploration missions in development for the coming decade.

The mission will advance the science priorities of the National Research Council's 2011 Planetary Science Decadal Survey and responds to the findings of the Mars Program Planning Group established earlier this year to assist NASA in restructuring its Mars Exploration Program.

"The challenge to restructure the Mars Exploration Program has turned from the seven minutes of terror for the Curiosity landing to the start of seven years of innovation," NASA's associate administrator for science, and astronaut John Grunsfeld said. "This mission concept fits within the current and projected Mars exploration budget, builds on the exciting discoveries of Curiosity, and takes advantage of a favorable launch opportunity."

The specific payload and science instruments for the 2020 mission will be openly competed, following the Science Mission Directorate's established processes for instrument selection. This process will begin with the establishment of a science definition team that will be tasked to outline the scientific objectives for the mission.

This mission fits within the five-year budget plan in the president's Fiscal Year 2013 budget request, and is contingent on future appropriations.

Plans also will include opportunities for infusing new capabilities developed through investments by NASA's Space Technology Program, Human Exploration and Operations Mission Directorate, and contributions from international partners.

Robert PearlmanNASA release
Science Team Outlines Goals for NASA's 2020 Mars Rover

The rover NASA will send to Mars in 2020 should look for signs of past life, collect samples for possible future return to Earth, and demonstrate technology for future human exploration of the Red Planet, according to a report provided to the agency.

The 154-page document was prepared by the Mars 2020 Science Definition Team, which NASA appointed in January to outline the scientific objectives for the mission.

The team, composed of 19 scientists and engineers from universities and research organizations, proposed a mission concept that could accomplish several high-priority planetary science goals and be a major step in meeting President Obama's challenge to send humans to Mars in the 2030s.

Above: Artist's Concept of Mars 2020 Rover, Annotated (NASA/JPL)

"Crafting the science and exploration goals is a crucial milestone in preparing for our next major Mars mission," said John Grunsfeld, NASA's associate administrator for science in Washington. "The objectives determined by NASA with the input from this team will become the basis later this year for soliciting proposals to provide instruments to be part of the science payload on this exciting step in Mars exploration."

NASA will conduct an open competition for the payload and science instruments. They will be placed on a rover similar to Curiosity, which landed on Mars almost a year ago. Using Curiosity's design will help minimize mission costs and risks and deliver a rover that can accomplish the mission objectives.

The 2020 mission proposed by the Science Definition Team would build upon the accomplishments of Curiosity and other Mars missions. The Spirit and Opportunity rovers, along with several orbiters, found evidence Mars has a watery history. Curiosity recently confirmed that past environmental conditions on Mars could have supported living microbes. According to the Science Definition Team, looking for signs of past life is the next logical step.

The team's report details how the rover would use its instruments for visual, mineralogical and chemical analysis down to microscopic scale to understand the environment around its landing site and identify biosignatures, or features in the rocks and soil that could have been formed biologically.

"The Mars 2020 mission concept does not presume that life ever existed on Mars," said Jack Mustard, chairman of the Science Definition Team and a professor at the Geological Sciences at Brown University in Providence, R.I. "However, given the recent Curiosity findings, past Martian life seems possible, and we should begin the difficult endeavor of seeking the signs of life. No matter what we learn, we would make significant progress in understanding the circumstances of early life existing on Earth and the possibilities of extraterrestrial life."

The measurements needed to explore a site on Mars to interpret ancient habitability and the potential for preserved biosignatures are identical to those needed to select and cache samples for future return to Earth. The Science Definition Team is proposing the rover collect and package as many as 31 samples of rock cores and soil for a later mission to bring back for more definitive analysis in laboratories on Earth. The science conducted by the rover's instruments would expand our knowledge of Mars and provide the context needed to make wise decisions about whether to return the samples to Earth.

"The Mars 2020 mission will provide a unique capability to address the major questions of habitability and life in the solar system," said Jim Green, director of NASA's Planetary Science Division in Washington. "This mission represents a major step towards creating high-value sampling and interrogation methods, as part of a broader strategy for sample returns by planetary missions."

Samples collected and analyzed by the rover will help inform future human exploration missions to Mars. The rover could make measurements and technology demonstrations to help designers of a human expedition understand any hazards posed by Martian dust and demonstrate how to collect carbon dioxide, which could be a resource for making oxygen and rocket fuel. Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface.

Robert PearlmanNASA release
NASA receives Mars rover instrument proposals for evaluation

NASA has received 58 proposals for science and exploration technology instruments to fly aboard the agency's next Mars rover in 2020, twice the usual number submitted for instrument competitions in the recent past, and an indicator of the extraordinary interest in exploration of the Red Planet.

The agency is beginning a thorough review to determine the best combination of science and exploration technology investigations for the mission and anticipates making final selections in the next five months.

"Proposal writing for science missions is extremely difficult and time consuming. We truly appreciate this overwhelming response by the worldwide science and technical community and are humbled by the support and enthusiasm for this unique mission," said John Grunsfeld, NASA's associate administrator for science in Washington. "We fully expect to be able to select an instrument suite that will return exciting science and advance space exploration at Mars."

NASA opened competition for Mars 2020 research proposals in September and closed it January 15. Several NASA facilities, academia, industry, research laboratories, and other government agencies submitted proposals. Seventeen proposals came from international partners.

The Mars 2020 mission is designed to accomplish several high-priority planetary science goals and will be an important step toward meeting President Obama's challenge to send humans to Mars in the 2030s. The mission will conduct geological assessments of the rover's landing site, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers.

The science instruments aboard the rover also will enable scientists to identify and select a collection of rock and soil samples that will be stored for potential return to Earth in the future. This will achieve one of the highest-priority objectives recommended by the National Research Council's 2011 Planetary Science Decadal Survey. Analysis of such samples in laboratories here on Earth will help determine whether life existed on Mars and help inform planning for human exploration missions to the planet.

The rover also may help designers of a human expedition understand the hazards posed by Martian dust and demonstrate how to collect carbon dioxide from the atmosphere, which could be a valuable resource for producing oxygen and rocket fuel.

"NASA robotic missions are pioneering a path for human exploration of Mars in the 2030s," said William Gerstenmaier, NASA's associate administrator for human exploration and operations in Washington. "The Mars 2020 rover mission presents new opportunities to learn how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the land could reduce costs and engineering challenges posed by Mars exploration."

The instruments developed from the selected proposals will be placed on a rover similar to Curiosity that has been exploring Mars since 2012. Using a proven landing system and rover chassis design to deliver these new experiments to Mars will ensure mission costs and risks are minimized as much as possible while still delivering a highly capable rover.

The 2020 mission will build on the achievements of Curiosity and other Mars missions, and offer opportunities to deploy new capabilities developed through investments by NASA's Space Technology Program, Human Exploration and Operations Mission Directorate, and contributions from international partners.

"New and more advanced space technologies are essential for future human expeditions to the Red Planet," said Michael Gazarik, NASA's associate administrator for space technology. "These technologies will enable the life support and transportation resources needed for future astronauts to live and work on Mars."

Robert PearlmanNASA release
NASA announces Mars 2020 rover payload to explore the Red Planet as never before

The next rover NASA will send to Mars in 2020 will carry seven carefully-selected instruments to conduct unprecedented science and exploration technology investigations on the Red Planet.

NASA announced the selected Mars 2020 rover instruments Thursday at the agency's headquarters in Washington. Managers made the selections out of 58 proposals received in January from researchers and engineers worldwide. Proposals received were twice the usual number submitted for instrument competitions in the recent past. This is an indicator of the extraordinary interest by the science community in the exploration of the Mars. The selected proposals have a total value of approximately $130 million for development of the instruments.

The Mars 2020 mission will be based on the design of the highly successful Mars Science Laboratory rover, Curiosity, which landed almost two years ago, and currently is operating on Mars. The new rover will carry more sophisticated, upgraded hardware and new instruments to conduct geological assessments of the rover's landing site, determine the potential habitability of the environment, and directly search for signs of ancient Martian life.

"Today we take another important step on our journey to Mars," said NASA Administrator Charles Bolden.” While getting to and landing on Mars is hard, Curiosity was an iconic example of how our robotic scientific explorers are paving the way for humans to pioneer Mars and beyond. Mars exploration will be this generation’s legacy, and the Mars 2020 rover will be another critical step on humans' journey to the Red Planet."

Scientists will use the Mars 2020 rover to identify and select a collection of rock and soil samples that will be stored for potential return to Earth by a future mission. The Mars 2020 mission is responsive to the science objectives recommended by the National Research Council's 2011 Planetary Science Decadal Survey.

“The Mars 2020 rover, with these new advanced scientific instruments, including those from our international partners, holds the promise to unlock more mysteries of Mars’ past as revealed in the geological record,” said John Grunsfeld astronaut, and associate administrator of NASA's Science Mission Directorate in Washington. “This mission will further our search for life in the universe and also offer opportunities to advance new capabilities in exploration technology.”

The Mars 2020 rover also will help advance our knowledge of how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the Martian land would transform future exploration of the planet. Designers of future human expeditions can use this mission to understand the hazards posed by Martian dust and demonstrate technology to process carbon dioxide from the atmosphere to produce oxygen. These experiments will help engineers learn how to use Martian resources to produce oxygen for human respiration and potentially oxidizer for rocket fuel.

"The 2020 rover will help answer questions about the Martian environment that astronauts will face and test technologies they need before landing on, exploring and returning from the Red Planet," said William Gerstenmaier, associate administrator for the Human Exploration and Operations Mission Directorate at NASA Headquarters in Washington. "Mars has resources needed to help sustain life, which can reduce the amount of supplies that human missions will need to carry. Better understanding the Martian dust and weather will be valuable data for planning human Mars missions. Testing ways to extract these resources and understand the environment will help make the pioneering of Mars feasible."

The selected payload proposals are:

  • Mastcam-Z, an advanced camera system with panoramic and stereoscopic imaging capability with the ability to zoom. The instrument also will determine mineralogy of the Martian surface and assist with rover operations. The principal investigator is James Bell, Arizona State University in Phoenix.

  • SuperCam, an instrument that can provide imaging, chemical composition analysis, and mineralogy. The instrument will also be able to detect the presence of organic compounds in rocks and regolith from a distance. The principal investigator is Roger Wiens, Los Alamos National Laboratory, Los Alamos, New Mexico. This instrument also has a significant contribution from the Centre National d’Etudes Spatiales,Institut de Recherche en Astrophysique et Plane’tologie (CNES/IRAP) France.

  • Planetary Instrument for X-ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer that will also contain an imager with high resolution to determine the fine scale elemental composition of Martian surface materials. PIXL will provide capabilities that permit more detailed detection and analysis of chemical elements than ever before. The principal investigator is Abigail Allwood, NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California.

  • Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC), a spectrometer that will provide fine-scale imaging and uses an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds. SHERLOC will be the first UV Raman spectrometer to fly to the surface of Mars and will provide complementary measurements with other instruments in the payload. The principal investigator is Luther Beegle, JPL.

  • The Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce oxygen from Martian atmospheric carbon dioxide. The principal investigator is Michael Hecht, Massachusetts Institute of Technology, Cambridge, Massachusetts.

  • Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that will provide measurements of temperature, wind speed and direction, pressure, relative humidity and dust size and shape. The principal investigator is Jose Rodriguez-Manfredi, Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Spain.

  • The Radar Imager for Mars' Subsurface Exploration (RIMFAX), a ground-penetrating radar that will provide centimeter-scale resolution of the geologic structure of the subsurface. The principal investigator is Svein-Erik Hamran, Forsvarets Forskning Institute, Norway.
"We are excited that NASA's Space Technology Program is partnered with Human Exploration and the Mars 2020 Rover Team to demonstrate our abilities to harvest the Mars atmosphere and convert its abundant carbon dioxide to pure oxygen'" said James Reuther, deputy associate administrator for programs for the Space Technology Mission Directorate. "This technology demonstration will pave the way for more affordable human missions to Mars where oxygen is needed for life support and rocket propulsion."

Instruments developed from the selected proposals will be placed on a rover similar to Curiosity, which has been exploring Mars since 2012. Using a proven landing system and rover chassis design to deliver these new experiments to Mars will ensure mission costs and risks are minimized as much as possible, while still delivering a highly capable rover.

Robert PearlmanNASA release
NASA's Next Mars Rover Progresses Toward 2020 Launch

After an extensive review process and passing a major development milestone, NASA is ready to proceed with final design and construction of its next Mars rover, currently targeted to launch in the summer of 2020 and arrive on the Red Planet in February 2021.

The Mars 2020 rover will investigate a region of Mars where the ancient environment may have been favorable for microbial life, probing the Martian rocks for evidence of past life. Throughout its investigation, it will collect samples of soil and rock and cache them on the surface for potential return to Earth by a future mission.

"The Mars 2020 rover is the first step in a potential multi-mission campaign to return carefully selected and sealed samples of Martian rocks and soil to Earth," said Geoffrey Yoder, acting associate administrator of NASA's Science Mission Directorate in Washington. "This mission marks a significant milestone in NASA's Journey to Mars – to determine whether life has ever existed on Mars, and to advance our goal of sending humans to the Red Planet."

To reduce risk and provide cost savings, the 2020 rover will look much like its six-wheeled, one-ton predecessor, Curiosity, but with an array of new science instruments and enhancements to explore Mars as never before. For example, the rover will conduct the first investigation into the usability and availability of Martian resources, including oxygen, in preparation for human missions.

Mars 2020 will carry an entirely new subsystem to collect and prepare Martian rocks and soil samples that includes a coring drill on its arm and a rack of sample tubes. About 30 of these sample tubes will be deposited at select locations for return on a potential future sample-retrieval mission. In laboratories on Earth, specimens from Mars could be analyzed for evidence of past life on Mars and possible health hazards for future human missions.

Two science instruments mounted on the rover's robotic arm will be used to search for signs of past life and determine where to collect samples by analyzing the chemical, mineral, physical and organic characteristics of Martian rocks. On the rover's mast, two science instruments will provide high-resolution imaging and three types of spectroscopy for characterizing rocks and soil from a distance, also helping to determine which rock targets to explore up close.

A suite of sensors on the mast and deck will monitor weather conditions and the dust environment, and a ground-penetrating radar will assess sub-surface geologic structure.

The Mars 2020 rover will use the same sky crane landing system as Curiosity, but will have the ability to land in more challenging terrain with two enhancements, making more rugged sites eligible as safe landing candidates.

"By adding what's known as range trigger, we can specify where we want the parachute to open, not just at what velocity we want it to open," said Allen Chen, Mars 2020 entry, descent and landing lead at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "That shrinks our landing area by nearly half."

Terrain-relative navigation on the new rover will use onboard analysis of downward-looking images taken during descent, matching them to a map that indicates zones designated unsafe for landing.

"As it is descending, the spacecraft can tell whether it is headed for one of the unsafe zones and divert to safe ground nearby," said Chen. "With this capability, we can now consider landing areas with unsafe zones that previously would have disqualified the whole area. Also, we can land closer to a specific science destination, for less driving after landing."

There will be a suite of cameras and a microphone that will capture the never-before-seen or heard imagery and sounds of the entry, descent and landing sequence. Information from the descent cameras and microphone will provide valuable data to assist in planning future Mars landings, and make for thrilling video.

"Nobody has ever seen what a parachute looks like as it is opening in the Martian atmosphere," said JPL's David Gruel, assistant flight system manager for the Mars 2020 mission. "So this will provide valuable engineering information."

Microphones have flown on previous missions to Mars, including NASA's Phoenix Mars Lander in 2008, but never have actually been used on the surface of the Red Planet.

"This will be a great opportunity for the public to hear the sounds of Mars for the first time, and it could also provide useful engineering information," said Mars 2020 Deputy Project Manager Matt Wallace of JPL.

Once a mission receives preliminary approval, it must go through four rigorous technical and programmatic reviews – known as Key Decision Points (KDP) — to proceed through the phases of development prior to launch. Phase A involves concept and requirements definition, Phase B is preliminary design and technology development, Phase C is final design and fabrication, and Phase D is system assembly, testing, and launch. Mars 2020 has just passed its KDP-C milestone.

"Since Mars 2020 is leveraging the design and some spare hardware from Curiosity, a significant amount of the mission's heritage components have already been built during Phases A and B," said George Tahu, Mars 2020 program executive at NASA Headquarters in Washington. "With the KDP to enter Phase C completed, the project is proceeding with final design and construction of the new systems, as well as the rest of the heritage elements for the mission."

The Mars 2020 mission is part of NASA's Mars Exploration Program. Driven by scientific discovery, the program currently includes two active rovers and three NASA spacecraft orbiting Mars. NASA also plans to launch a stationary Mars lander in 2018, InSight, to study the deep interior of Mars.

JPL manages the Mars 2020 project and the Mars Exploration Program for NASA's Science Mission Directorate in Washington.

Robert PearlmanNASA release
NASA Awards Launch Services Contract for Mars 2020 Rover Mission

NASA has selected United Launch Services LLC of Centennial, Colorado, to provide launch services for a mission that will address high-priority science goals for the agency's Journey to Mars.

Mars 2020 is targeted for launch in July 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rover will conduct geological assessments of its landing site on Mars, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers.

Additionally, scientists will use the instruments aboard the rover to identify and collect samples of rock and soil, encase them in sealed tubes, and leave them on the surface of Mars for potential return to Earth by a future mission to the Red Planet.

The mission will build on the achievements of Curiosity and other Mars Exploration Program missions, and offer opportunities to deploy new capabilities developed through investments by NASA's Space Technology Program and Human Exploration and Operations Mission Directorate, as well as contributions from international partners.

The Mars 2020 rover mission presents new opportunities to learn how future human explorers could use natural resources available on the surface of the Red Planet. An ability to live off the land could reduce costs and engineering challenges posed by Mars exploration.

The total cost for NASA to launch Mars 2020 is approximately $243 million, which includes: the launch service; spacecraft and spacecraft power source processing; planetary protection processing; launch vehicle integration; and tracking, data and telemetry support.

Robert PearlmanNASA release
Mars 2020 Lander Vision System Tested

NASA tested new "eyes" for its next Mars rover mission on a rocket built by Masten Space Systems in Mojave, California, in 2014, thanks in part to NASA's Flight Opportunities Program, or FO program.

The agency's Jet Propulsion Laboratory in Pasadena, California, is leading development of the Mars 2020 rover's Lander Vision System, or LVS. The prototype vision system launched 1,066 feet into the air aboard Masten's rocket-powered "Xombie" test platform and helped guide the rocket to a precise landing at a predesignated target. LVS flew as part of a larger system of experimental landing technologies called the Autonomous Descent and Ascent Powered-flight Testbed, or ADAPT.

Above: Mars 2020 Lander Vision System flight tested aboard a Masten "Xombie" up to 1,066 feet on December 9, 2014 at Mojave Air and Space Port in California.

LVS, a camera-based navigation system, photographs the terrain beneath a descending spacecraft and matches it with onboard maps allowing the craft to detect its location relative to landing hazards such as boulders and outcroppings.

The system can then direct the craft toward a safe landing at its primary target site or divert touchdown toward better terrain if there are hazards in the approaching target area. Imaging matching is aided by an inertial measurement unit that monitors orientation.

FO program funded the Masten flight tests under the Space Technology Mission Directorate. The program obtains commercial suborbital space launch services to pursue science, technology and engineering to mature technology relevant to NASA's pursuit of space exploration. The program nurtures the emerging suborbital space industry and allows NASA to focus on deep space.

Andrew Johnson, principal investigator in the Lander Vision System development, said the tests built confidence that the vision system will enable Mars 2020 to land safely.

"By providing funding for flight tests, FOP motivated us to build guidance, navigation and control payloads for testing on Xombie," Johnson said. "In the end we showed a closed loop pinpoint landing demo that eliminated any technical concerns with flying the Lander Vision System on Mars 2020."

According to "Lander Vision System for Safe and Precise Entry Descent and Landing," a 2012 abstract co-authored by Johnson for a Mars exploration workshop, LVS enables a broad range of potential landing sites for Mars missions.

Typically, Mars landers have lacked the ability to analyze and react to hazards, the abstract says. To avoid hazards, mission planners selected wide-open landing sites with mostly flat terrain. As a result, landers and rovers were limited to areas with relatively limited geological features, and were unable to access many sites of high scientific interest with more complex and hazardous surface morphology. LVS will enable safe landing at these scientifically compelling Mars landing sites.

An LVS-equipped mission allows for opportunities to land within more challenging environments and pursue new discoveries about Mars. With LVS baselined for inclusion on Mars 2020, the researchers are now focused on building the flight system ahead of its eventual role on the red planet.

Robert PearlmanNASA release
Scientists Shortlist Three Landing Sites for Mars 2020

Participants in a landing site workshop for NASA's upcoming Mars 2020 mission have recommended three locations on the Red Planet for further evaluation. The three potential landing sites for NASA's next Mars rover include Northeast Syrtis (a very ancient portion of Mars' surface), Jezero crater, (once home to an ancient Martian lake), and Columbia Hills (potentially home to an ancient hot spring, explored by NASA's Spirit rover).

More information on the landing sites can be found here.

Mars 2020 is targeted for launch in July 2020 aboard an Atlas V 541 rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rover will conduct geological assessments of its landing site on Mars, determine the habitability of the environment, search for signs of ancient Martian life, and assess natural resources and hazards for future human explorers. It will also prepare a collection of samples for possible return to Earth by a future mission.

Robert PearlmanNASA release
NASA's Mars 2020 Mission Performs First Supersonic Parachute Test

Landing on Mars is difficult and not always successful. Well-designed advance testing helps. An ambitious NASA Mars rover mission set to launch in 2020 will rely on a special parachute to slow the spacecraft down as it enters the Martian atmosphere at over 12,000 mph (5.4 kilometers per second). Preparations for this mission have provided, for the first time, dramatic video of the parachute opening at supersonic speed.

The Mars 2020 mission will seek signs of ancient Martian life by investigating evidence in place and by caching drilled samples of Martian rocks for potential future return to Earth. The mission's parachute-testing series, the Advanced Supersonic Parachute Inflation Research Experiment, or ASPIRE, began with a rocket launch and upper-atmosphere flight last month from the NASA Goddard Space Flight Center's Wallops Flight Facility in Wallops Island, Virginia.

"It is quite a ride," said Ian Clark, the test's technical lead from NASA's Jet Propulsion Laboratory in Pasadena, California. "The imagery of our first parachute inflation is almost as breathtaking to behold as it is scientifically significant. For the first time, we get to see what it would look like to be in a spacecraft hurtling towards the Red Planet, unfurling its parachute."

A 58-foot-tall (17.7-meter) Black Brant IX sounding rocket launched from Wallops on Oct. 4 for this evaluation of the ASPIRE payload performance. The payload is a bullet-nosed, cylindrical structure holding a supersonic parachute, the parachute's deployment mechanism, and the test's high-definition instrumentation -- including cameras -- to record data.

The rocket carried the payload as high as about 32 miles (51 kilometers). Forty-two seconds later, at an altitude of 26 miles (42 kilometers) and a velocity of 1.8 times the speed of sound, the test conditions were met and the Mars parachute successfully deployed. Thirty-five minutes after launch, ASPIRE splashed down in the Atlantic Ocean about 34 miles (54 kilometers) southeast of Wallops Island.

"Everything went according to plan or better than planned," said Clark. "We not only proved that we could get our payload to the correct altitude and velocity conditions to best mimic a parachute deployment in the Martian atmosphere, but as an added bonus, we got to see our parachute in action as well."

The parachute tested during this first flight was almost an exact copy of the parachute used to land NASA's Mars Science Laboratory successfully on the Red Planet in 2012. Future tests will evaluate the performance of a strengthened parachute that could also be used in future Mars missions. The Mars 2020 team will use data from these tests to finalize the design for its mission.

The next ASPIRE test is planned for February 2018.

Robert PearlmanNASA release
NASA Builds its Next Mars Rover Mission

In just a few years, NASA's next Mars rover mission will be flying to the Red Planet.

At a glance, it looks a lot like its predecessor, the Curiosity Mars rover. But there's no doubt it's a souped-up science machine: It has seven new instruments, redesigned wheels and more autonomy. A drill will capture rock cores, while a caching system with a miniature robotic arm will seal up these samples. Then, they'll be deposited on the Martian surface for possible pickup by a future mission.

This new hardware is being developed at NASA's Jet Propulsion Laboratory, Pasadena, California, which manages the mission for the agency. It includes the Mars 2020 mission's cruise stage, which will fly the rover through space, and the descent stage, a rocket-powered "sky crane" that will lower it to the planet's surface. Both of these stages have recently moved into JPL's Spacecraft Assembly Facility.

Mars 2020 relies heavily on the system designs and spare hardware previously created for Mars Science Laboratory's Curiosity rover, which landed in 2012. Roughly 85 percent of the new rover's mass is based on this "heritage hardware."

"The fact that so much of the hardware has already been designed -- or even already exists -- is a major advantage for this mission," said Jim Watzin, director of NASA's Mars Exploration Program. "It saves us money, time and most of all, reduces risk."

Despite its similarities to Mars Science Laboratory, the new mission has very different goals. Mars 2020's instruments will seek signs of ancient life by studying terrain that is now inhospitable, but once held flowing rivers and lakes, more than 3.5 billion years ago.

To achieve these new goals, the rover has a suite of cutting-edge science instruments. It will seek out biosignatures on a microbial scale: An X-ray spectrometer will target spots as small as a grain of table salt, while an ultraviolet laser will detect the "glow" from excited rings of carbon atoms. A ground-penetrating radar will be the first instrument to look under the surface of Mars, mapping layers of rock, water and ice up to 30 feet (10 meters) deep, depending on the material.

The rover is getting some upgraded Curiosity hardware, including color cameras, a zoom lens and a laser that can vaporize rocks and soil to analyze their chemistry.

"Our next instruments will build on the success of MSL, which was a proving ground for new technology," said George Tahu, NASA's Mars 2020 program executive. "These will gather science data in ways that weren't possible before."

The mission will also undertake a marathon sample hunt: The rover team will try to drill at least 20 rock cores, and possibly as many as 30 or 40, for possible future return to Earth.

"Whether life ever existed beyond Earth is one of the grand questions humans seek to answer," said Ken Farley of JPL, Mars 2020's project scientist. "What we learn from the samples collected during this mission has the potential to address whether we're alone in the universe."

JPL is also developing a crucial new landing technology called terrain-relative navigation. As the descent stage approaches the Martian surface, it will use computer vision to compare the landscape with pre-loaded terrain maps. This technology will guide the descent stage to safe landing sites, correcting its course along the way.

A related technology called the ranger trigger will use location and velocity to determine when to fire the spacecraft's parachute. That change will narrow the landing ellipse by more than 50 percent.

"Terrain-relative navigation enables us to go to sites that were ruled too risky for Curiosity to explore," said Al Chen of JPL, the Mars 202 entry, descent and landing lead. "The range trigger lets us land closer to areas of scientific interest, shaving miles -- potentially as much as a year -- off a rover's journey."

This approach to minimizing landing errors will be critical in guiding any future mission dedicated to retrieving the Mars 2020 samples, Chen said.

Site selection has been another milestone for the mission. In February, the science community narrowed the list of potential landing sites from eight to three. Those three remaining sites represent fundamentally different environments that could have harbored primitive life: an ancient lakebed called Jezero Crater; Northeast Syrtis, where warm waters may have chemically interacted with subsurface rocks; and a possible hot springs at Columbia Hills.

All three sites have rich geology and may potentially harbor signs of past microbial life. A final landing site decision is still more than a year away.

"In the coming years, the 2020 science team will be weighing the advantages and disadvantages of each of these sites," Farley said. "It is by far the most important decision we have ahead of us."

Robert PearlmanNASA release
A Piece of Mars is Going Home

A chunk of Mars will soon be returning home.

A piece of a meteorite called Sayh al Uhaymir 008 (SaU008) will be carried on board NASA's Mars 2020 rover mission, now being built at the agency's Jet Propulsion Laboratory in Pasadena, California. This chunk will serve as target practice for a high-precision laser on the rover's arm.

Above: Rohit Bhartia of NASA's Mars 2020 mission holds a slice of a meteorite scientists have determined came from Mars. One of two slices will be used for testing a laser instrument for NASA's Mars 2020 rover while it's still on Earth; the other slice will go to Mars onboard the rover. (NASA/JPL-Caltech)

Mars 2020's goal is ambitious: collect samples from the Red Planet's surface that a future mission could potentially return to Earth. One of the rover's many tools will be a laser designed to illuminate rock features as fine as a human hair.

That level of precision requires a calibration target to help tweak the laser's settings. Previous NASA rovers have included calibration targets as well. Depending on the instrument, the target material can include things like rock, metal or glass, and can often look like a painter's palette.

But working on this particular instrument sparked an idea among JPL scientists: why not use an actual piece of Mars? Earth has a limited supply of Martian meteorites, which scientists determined were blasted off Mars' surface millions of years ago.

These meteorites aren't as unique as the geologically diverse samples 2020 will collect. But they're still scientifically interesting — and perfect for target practice.

"We're studying things on such a fine scale that slight misalignments, caused by changes in temperature or even the rover settling into sand, can require us to correct our aim," said Luther Beegle of JPL. Beegle is principal investigator for a laser instrument called SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals). "By studying how the instrument sees a fixed target, we can understand how it will see a piece of the Martian surface."

SHERLOC will be the first instrument on Mars to use Raman and fluorescence spectroscopies, scientific techniques familiar to forensics experts. Whenever an ultraviolet light shines over certain carbon-based chemicals, they give off the same characteristic glow that you see under a black light.

Scientists can use this glow to detect chemicals that form in the presence of life. SHERLOC will photograph the rocks it studies, then map the chemicals it detects across those images. That adds a spatial context to the layers of data Mars 2020 will collect.

"This kind of science requires texture and organic chemicals — two things that our target meteorite will provide," said Rohit Bhartia of JPL, SHERLOC's deputy principal investigator.

No Flaky Meteorites

Above: Close-up of a slice of a meteorite scientists have determined came from Mars. One of two slices will be used for testing a laser instrument for NASA's Mars 2020 rover while it's still on Earth; the other slice will go to Mars onboard the rover. (NASA/JPL-Caltech)

Martian meteorites are precious in their rarity. Only about 200 have been confirmed by The Meteoritical Society, which has a database listing these vetted meteorites.

To select the right one for SHERLOC, JPL turned to contacts at NASA's Johnson Space Center in Houston, as well as the Natural History Museum of London. Not just any Martian meteorite would do: its condition would need to be solid enough that it would not flake apart during the intensity of launch and landing.

It also needed to possess certain chemical features to test SHERLOC's sensitivity. These had to be reasonably easy to detect repeatedly for the calibration target to be useful.

Experts tried several samples, cutting off thin bits to test whether they would crumble. Using a "flaky" sample could damage the entire meteorite in the process.

The SHERLOC team ultimately agreed on using SaU008, a meteorite found in Oman in 1999. Besides being more rugged than other samples, a piece of it was available courtesy of Caroline Smith, principal curator of meteorites at London's Natural History Museum.

"Every year, we provide hundreds of meteorite specimens to scientists all over the world for study," Smith said. "This is a first for us: sending one of our samples back home for the benefit of science."

SaU008 will be the first Martian meteorite to have a fragment return to the planet's surface — though not the first on a return trip to Mars.

Above: A slice of a meteorite scientists have determined came from Mars placed inside an oxygen plasma cleaner, which removes organics from the outside of surfaces. One of two slices of the meteorite will be used for testing a laser instrument for NASA's Mars 2020 rover while it's still on Earth; the other slice will go to Mars onboard the rover. (NASA/JPL-Caltech)

NASA's Mars Global Surveyor included a chunk of a meteorite known as Zagami. It's still floating around the Red Planet onboard the now-defunct orbiter.

Additionally, the team behind Mars2020's SuperCam instrument will be adding a Martian meteorite to their own calibration target.

Preparing for Humans on Mars

Along with its own Martian meteorite, SHERLOC's calibration target will include several interesting scientific samples for human spaceflight. These include materials that could be used to make spacesuit fabric, gloves and a helmet's visor.

By watching how they hold up under Martian weather, including radiation, NASA will be able to test these materials for future Mars missions.

"The SHERLOC instrument is a valuable opportunity to prepare for human spaceflight as well as to perform fundamental scientific investigations of the Martian surface," said Marc Fries, a SHERLOC co-investigator and curator of extraterrestrial materials at Johnson Space Center. "It gives us a convenient way to test material that will keep future astronauts safe when they get to Mars."

Contact Us | The Source for Space History & Artifacts

Copyright 2018 collectSPACE.com All rights reserved.





advertisement