Space News
space history and artifacts articles

Messages
space history discussion forums

Sightings
worldwide astronaut appearances

Resources
selected space history documents

Forum:Exploration: Asteroids, Moon and Mars
Topic:Commercial rocket data may help Mars landings
Want to register?
Who Can Post? Any registered users may post a reply.
About Registration You must be registered in order to post a topic or reply in this forum.
Your UserName:
Your Password:   Forget your password?
Your Reply:


*HTML is ON
*UBB Code is ON

Smilies Legend

Options Disable Smilies in This Post.
Show Signature: include your profile signature. Only registered users may have signatures.
*If HTML and/or UBB Code are enabled, this means you can use HTML and/or UBB Code in your message.

If you have previously registered, but forgotten your password, click here.

NASA equipped two aircraft with advanced instrumentation to document re-entry of the rocket's first stage. The first stage is the part of the rocket that is ignited at launch and burns through the rocket's ascent until it runs out of propellant, at which point it is discarded from the second stage and returns to Earth. During its return, or descent, NASA captured quality infrared and high definition images and monitored changes in the smoke plume as the engines were turned on and off.

"NASA's interest in building our Mars entry, descent and landing capability and SpaceX's interest and experimental operation of a reusable space transportation system enabled acquisition of these data at low cost, without standing up a dedicated flight project of its own," said Charles Campbell, PDT project manager at NASA's Johnson Space Center in Houston.

NASA's Scientifically Calibrated In-Flight Imagery (SCIFLI) project team at NASA's Langley Research Center in Hampton, Virginia, had their eyes, cameras and telescopes trained on the Falcon with the help of two long-range aircraft provided by NASA and the U.S. Navy.

A NASA WB-57, a twin jet engine high-altitude research aircraft from Johnson, was equipped with a long-range infrared optical system to capture the images. It is a unique full-motion video camera system that is gimbal-mounted on the nose of the WB-57. It collects full-color high definition and infrared video.

A Navy NP-3D Orion aircraft from the Naval Air Systems Command Weapons Division's Air Test and Evaluation Squadron-30 at Point Mugu, California, was equipped with a long-range infrared optical system and also took thermal images of the launch.

On launch day, the WB-57 and NP-3D Orion reached their observation locations about 50 miles from the projected rocket trajectory. After launch, the rocket emitted enough thermal energy for the plane's infrared cameras to catch a glimpse. Both flight crews then worked to obtain data as the first stage descended at supersonic speeds off the coast of Georgia.

"Through our partnership with SpaceX we're gaining access to real-world test data about advanced rocket stage design and retro-propulsion," said Michael Gazarik, NASA's associate administrator for Space Technology at NASA Headquarters in Washington. "Through this partnership we're saving the taxpayer millions of dollars we'd otherwise have to spend to develop and test rockets and flights in-house. This is another great example of American companies partnering with NASA to enable our future exploration goals."

This research and technology effort is funded by the Game Changing Development program in NASA's Space Technology Mission Directorate (STMD). STMD builds, tests and flies technologies needed for the aerospace missions of tomorrow and continues to solicit the help of the best and brightest minds in academia, industry, and government to drive innovation and enable solutions in important technology thrust areas. These planned investments address high priority challenges for achieving safe and affordable deep space exploration.

Contact Us | The Source for Space History & Artifacts

Copyright 1999-2024 collectSPACE. All rights reserved.





advertisement